RAD51 is the central protein in DNA repair by homologous recombination (HR), involved in several steps of this process. It is shown that overexpression of the RAD51 protein is correlated with increased survival of cancer cells to cancer treatments. For the past decade, RAD51 overexpression-mediated resistance has justified the development of targeted inhibitors.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2020
Background: DNA dependent Protein Kinase (DNA-PK) is an heterotrimeric complex regulating the Non Homologous End Joining (NHEJ) double strand break (DSB) repair pathway. The activity of its catalytic subunit (DNA-PKcs) is regulated by multiple phosphorylations, like the Ser2056 one that impacts DSB end processing and telomeres integrity. O-GlcNAcylation is a post translational modification (PTM) closely related to phosphorylation and its implication in the modulation of DNA-PKcs activity during the DNA Damage Response (DDR) is unknown.
View Article and Find Full Text PDFAntibody microarrays have become a powerful tool in multiplexed immunoassay technologies. The advantage of microarray technology is the possibility of rapid analysis of multiple targets in a single sample with a high sensitivity, which makes them ideal for high throughput screening. Usually these microarrays contain biological recognition molecules, such as full-size antibodies, antigen-binding fragments, and single-domain antibodies, and a label for detection.
View Article and Find Full Text PDFTauopathies such as Alzheimer's Disease (AD) are neurodegenerative disorders for which there is presently no cure. They are named after the abnormal oligomerization/aggregation of the neuronal microtubule-associated Tau protein. Besides its role as a microtubule-associated protein, a DNA-binding capacity and a nuclear localization for Tau protein has been described in neurons.
View Article and Find Full Text PDFTherapeutic efficacy against cancer is often based on a variety of DNA lesions, including DNA double-strand breaks (DSBs) which are repaired by homologous recombination and non-homologous end joining (NHEJ) pathways. In the past decade, the functions of the DNA repair proteins have been described as a potential mechanism of resistance in tumor cells. Therefore, the DNA repair proteins have become targets to improve the efficacy of anticancer therapy.
View Article and Find Full Text PDFThe field of optical bioimaging has considerably flourished with the advent of sophisticated microscopy techniques and ultra-bright fluorescent tools. Fluorescent organic nanoparticles (FONs) have thus recently appeared as very attractive labels for their high payload, absence of cytotoxicity and eventual biodegradation. Nevertheless, their bioconjugation to target specific receptors with high imaging contrast is scarcely performed.
View Article and Find Full Text PDFPericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer's disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau).
View Article and Find Full Text PDFHigh-density nanoarchitectures, endowed with simultaneous fluorescence and contrast properties for MRI and TEM imaging, have been obtained using a simple self-assembling strategy based on supramolecular interactions between non-doped fluorescent organic nanoparticles (FON) and superparamagnetic nanoparticles. In this way, a high-payload core-shell structure FON@mag has been obtained, protecting the hydrophobic fluorophores from the surroundings as well as from emission quenching by the shell of magnetic nanoparticles. Compared to isolated nanoparticles, maghemite nanoparticles self-assembled as an external shell create large inhomogeneous magnetic field, which causes enhanced transverse relaxivity and exacerbated MRI contrast.
View Article and Find Full Text PDFThe expression and activity of DNA-dependent protein kinase (DNA-PK) is related to DNA repair status in the response of cells to exogenous and endogenous factors. Recent studies indicate that Epidermal Growth Factor Receptor (EGFR) is involved in modulating DNA-PK. It has been shown that a compound 4-nitro-7-[(1-oxidopyridin-2-yl)sulfanyl]-2,1,3-benzoxadiazole (NSC), bearing a nitro-benzoxadiazole (NBD) scaffold, enhances tyrosine phosphorylation of EGFR and triggers downstream signaling pathways.
View Article and Find Full Text PDFStrongly solvatochromic fluorophores are devised, containing alkyl chains and enable to self-assemble as very bright fluorescent organic nanoparticles (FONs) in water (Φf = 0.28). The alkyl chains impart each fluorophore with strongly hydrophobic surroundings, causing distinct emission colors between FONs where the fluorophores are associated, and their disassembled state.
View Article and Find Full Text PDFThe capacity of endogenous Tau to bind DNA has been recently identified in neurons under physiological or oxidative stress conditions. Characterization of the protein domains involved in Tau-DNA complex formation is an essential first step in clarifying the contribution of Tau-DNA interactions to neurological biological processes. To identify the amino acid residues involved in the interaction of Tau with oligonucleotides, we have characterized a Tau-DNA complex using nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDF