Annexin A11 mutations are a rare cause of amyotrophic lateral sclerosis (ALS), wherein replicated protein variants P36R, G38R, D40G and D40Y are located in a small-alpha helix within the long, disordered N-terminus. To elucidate disease mechanisms, we characterised the phenotypes induced by a genetic loss of function (LoF) and by misexpression of G38R and D40G in vivo. Loss of Annexin A11 results in a low-penetrant behavioural phenotype and aberrant axonal morphology in zebrafish homozygous knockout larvae, which is rescued by human WT Annexin A11.
View Article and Find Full Text PDFMethods Mol Biol
September 2023
Primary cell culture is an invaluable method frequently used to overcome challenges associated with in vivo experiments. In zebrafish research, in vivo live imaging experiments are routine owing to the high optical transparency of embryos, and, as a result, primary cell culture has been less utilized. However, the approach still boasts powerful advantages, emphasizing the importance of sophisticated zebrafish cell culture protocols.
View Article and Find Full Text PDFLoss of SFPQ is a hallmark of motor degeneration in ALS and prevents maturation of motor neurons when occurring during embryogenesis. Here, we show that in zebrafish, developing motor neurons lacking SFPQ exhibit axon extension, branching and synaptogenesis defects, prior to degeneration. Subcellular transcriptomics reveals that loss of SFPQ in neurons produces a complex set of aberrant intron-retaining (IR) transcripts coding for neuron-specific proteins that accumulate in neurites.
View Article and Find Full Text PDFRegulation of pre-mRNA splicing and polyadenylation plays a profound role in neurons by diversifying the proteome and modulating gene expression in response to physiological cues. Although most of the pre-mRNA processing is thought to occur in the nucleus, numerous splicing regulators are also found in neurites. Here, we show that U1-70K/SNRNP70, a component of the major spliceosome, localizes in RNA-associated granules in zebrafish axons.
View Article and Find Full Text PDFManganese neurotoxicity is a hallmark of hypermanganesemia with dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of slc39a14-/- mutant zebrafish that were exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that Ca2+ dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity.
View Article and Find Full Text PDFCorrect orchestration of nervous system development is a profound challenge that involves coordination of complex molecular and cellular processes. Mechanistic target of rapamycin (mTOR) signaling is a key regulator of nervous system development and synaptic function. The mTOR kinase is a hub for sensing inputs including growth factor signaling, nutrients and energy levels.
View Article and Find Full Text PDFAberrantly expressed fused in sarcoma (FUS) is a hallmark of FUS-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Wildtype FUS localises to synapses and interacts with mitochondrial proteins while mutations have been shown to cause to pathological changes affecting mitochondria, synapses and the neuromuscular junction (NMJ). This indicates a crucial physiological role for FUS in regulating synaptic and mitochondrial function that is currently poorly understood.
View Article and Find Full Text PDFThe RNA-binding protein SFPQ plays an important role in neuronal development and has been associated with several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease. Here, we report that loss of sfpq leads to premature termination of multiple transcripts due to widespread activation of previously unannotated cryptic last exons (CLEs). These SFPQ-inhibited CLEs appear preferentially in long introns of genes with neuronal functions and can dampen gene expression outputs and/or give rise to short peptides interfering with the normal gene functions.
View Article and Find Full Text PDFDickkopf-1 (Dkk1) is a secreted Wnt antagonist with a well-established role in head induction during development. Numerous studies have emerged implicating Dkk1 in various malignancies and neurodegenerative diseases through an unknown mechanism. Using zebrafish gastrulation as a model for collective cell migration, we unveil such a mechanism, identifying a role for Dkk1 in control of cell connectivity and polarity in vivo, independent of its known function.
View Article and Find Full Text PDFThe embryonic development of the pineal organ, a neuroendocrine gland on top of the diencephalon, remains enigmatic. Classic fate-mapping studies suggested that pineal progenitors originate from the lateral border of the anterior neural plate. We show here, using gene expression and fate mapping/lineage tracing in zebrafish, that pineal progenitors originate, at least in part, from the non-neural ectoderm.
View Article and Find Full Text PDFThrough forward genetic screening for mutations affecting visual system development, we identified prominent coloboma and cell-autonomous retinal neuron differentiation, lamination and retinal axon projection defects in eisspalte (ele) mutant zebrafish. Additional axonal deficits were present, most notably at midline axon commissures. Genetic mapping and cloning of the ele mutation showed that the affected gene is slbp, which encodes a conserved RNA stem-loop binding protein involved in replication dependent histone mRNA metabolism.
View Article and Find Full Text PDFFunctional analyses of genes responsible for neurodegenerative disorders have unveiled crucial links between neurodegenerative processes and key developmental signalling pathways. Mutations in -encoding spastin cause hereditary spastic paraplegia (HSP). Spastin is involved in diverse cellular processes that couple microtubule severing to membrane remodelling.
View Article and Find Full Text PDFDuring neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered.
View Article and Find Full Text PDFAs the embryonic ectoderm is induced to form the neural plate, cells inside this epithelium acquire restricted identities that will dictate their behavior and progressive differentiation. The first behavior adopted by most neural plate cells is called neurulation, a morphogenetic movement shaping the neuroepithelium into a tube. One cell population is not adopting this movement: the eye field.
View Article and Find Full Text PDFSpatiotemporal variations of neurogenesis are thought to account for the evolution of brain shape. In the dorsal telencephalon (pallium) of vertebrates, it remains unresolved which ancestral neurogenesis mode prefigures the highly divergent cytoarchitectures that are seen in extant species. To gain insight into this question, we developed genetic tools to generate here the first 4-dimensional (3D + birthdating time) map of pallium construction in the adult teleost zebrafish.
View Article and Find Full Text PDFRecent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously.
View Article and Find Full Text PDFCurr Opin Neurobiol
February 2017
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity.
View Article and Find Full Text PDFBackground: Nodal signalling is an absolute requirement for normal mesoderm and endoderm formation in vertebrate embryos, yet the transcriptional networks acting directly downstream of Nodal and the extent to which they are conserved is largely unexplored, particularly in vivo. Eomesodermin also plays a role in patterning mesoderm and endoderm in vertebrates, but its mechanisms of action, and how it interacts with the Nodal signalling pathway are still unclear.
Results: Using a combination of ChIP-seq and expression analysis we identify direct targets of Smad2, the effector of Nodal signalling in blastula stage zebrafish embryos, including many novel target genes.
Little is known on the embryonic origin and related heterogeneity of adult neural stem cells (aNSCs). We use conditional genetic tracing, activated in a global or mosaic fashion by cell type-specific promoters or focal laser uncaging, coupled with gene expression analyses and Notch invalidations, to address this issue in the zebrafish adult telencephalon. We report that the germinal zone of the adult pallium originates from two distinct subtypes of embryonic progenitors and integrates two modes of aNSC formation.
View Article and Find Full Text PDFDuring early development Wnt signaling has a key role in patterning the prospective nervous system by regulation of cell fate specification, cell polarity, and cell migration. Wnt also coordinates the formation of neural circuits on multiple levels such as transcription, cell cycle, and asymmetric cell division. Here we review the latest findings addressing the role of canonical Wnt/β-catenin signaling during developmental and adult neurogenesis; exploring the connection of in vivo data to the recently described Wnt-driven asymmetric stem cell division in vitro.
View Article and Find Full Text PDFThe GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos.
View Article and Find Full Text PDFBcl-2 proteins are acknowledged as key regulators of programmed cell death. However, increasing data suggest additional roles, including regulation of the cell cycle, metabolism and cytoskeletal dynamics. Here we report the discovery and characterization of a new Bcl-2-related multidomain apoptosis accelerator, Bcl-wav, found in fish and frogs.
View Article and Find Full Text PDFFew families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin.
View Article and Find Full Text PDFGene Expr Patterns
December 2013
Neurexophilin 1 (Nxph1) is a specific endoligand of α-neurexins that is essential for trans-synaptic activation. Here, we report its dynamic expression during development in zebrafish. Our study revealed an early onset of expression of nxph1.
View Article and Find Full Text PDF