Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway.
View Article and Find Full Text PDFNanodiamond (ND) has emerged as a promising carbon nanomaterial for therapeutic applications. In previous studies, ND has been reported to have outstanding biocompatibility and high uptake rate in various cell types. ND containing nitrogen-vacancy centers exhibit fluorescence property is called fluorescent nanodiamond (FND), and has been applied for bio-labeling agent.
View Article and Find Full Text PDFSecurin and γ-H2AX have been shown to regulate cell survival and genomic stability. However, it is still unknown how the expression and regulation of these proteins is altered following treatment with baicalein, a natural flavonoid extracted from the Scutellaria baicalensis root. In the present study, we investigate the possible roles of securin and γ-H2AX in baicalein-induced cancer cell death.
View Article and Find Full Text PDF