Publications by authors named "Hou-Cheng Zhou"

Magnesium chelatase (MgCh) catalyzes the insertion of magnesium into protoporphyrin IX, a vital step in chlorophyll (Chl) biogenesis. The enzyme consists of 3 subunits, MgCh I subunit (CHLI), MgCh D subunit (CHLD), and MgCh H subunit (CHLH). The CHLI subunit is an ATPase that mediates catalysis.

View Article and Find Full Text PDF

It is well known that β3-adrenoceptor (β3-AR) in many brain structures including prefrontal cortex (PFC) is involved in stress-related behavioral changes. SR58611A, a brain-penetrant β3-AR subtypes agonist, is revealed to exhibit anxiolytic- and antidepressant-like effects. Whereas activation of β3-AR exerts beneficial effects on cognitive function, the underlying cellular and molecular mechanisms have not been fully determined.

View Article and Find Full Text PDF

β-adrenoceptor (β-AR), especially the β1- and β2-AR subtypes, is known to participate in stress-related behavioral changes. Recently, SR58611A, a brain-penetrant β3-AR agonist, exhibits anxiolytic- and antidepressant-like effects. In this study, we sought to study the role of SR58611A in behavioral changes and its potential cellular and molecular mechanism in the prefrontal cortex (PFC).

View Article and Find Full Text PDF

Whereas β2-adrenoceptor (β2-AR) has been reported to reduce GABAergic activity in the prefrontal cortex (PFC), the underlying cellular and molecular mechanisms have not been completely determined. Here, we showed that β2-AR agonist Clenbuterol (Clen) decreased GABAergic transmission onto PFC layer V/VI pyramidal neurons via a presynaptic mechanism without altering postsynaptic GABA receptors. Clen decreased the action potential firing rate but increased the burst afterhyperpolarization (AHP) amplitude in PFC interneurons.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) plays a critical role in cognitive functions, including working memory, attention regulation, behavioral inhibition, as well as memory storage. The functions of PFC are very sensitive to norepinephrine (NE), and even low levels of endogenously released NE exert a dramatic influence on the functioning of the PFC. Activation of β-adrenoceptors (β-ARs) facilitates synaptic potentiation and enhances memory in the hippocampus.

View Article and Find Full Text PDF