Publications by authors named "Hou Ian"

The nonclassicality of a macroscopic single-mode optical superposition state is potentially convertible into entanglement, when the state is mixed with the vacuum on a beam splitter. Considering light beams with polarization degree of freedom in Euclidean space as coherent product states in a bipartite Hilbert space, we propose a method to convert the two orthogonal polarizations into simultaneous entanglement and classical nonseparability through nonclassicality in the superpositions of coherent and displaced Fock states. Equivalent Bell state emerges from the resulted superpositions and the proportion of mixed entanglement and nonseparablity is determined by the displacement amplitudes along the polarization directions.

View Article and Find Full Text PDF

We report both cracking and self-healing in crystals occurring during a thermal phase transition, followed by a topochemical polymerization. A squaramide-based monomer was designed where the azide and alkyne units of adjacent molecules are positioned favorably for a topochemical click reaction. The monomer undergoes spontaneous single-crystal-to-single-crystal (SCSC) polymerization at room temperature via regiospecific 1,3-dipolar cycloaddition, yielding the corresponding triazole-linked polymer in a few days.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most prominent medical conditions in the world. Understanding the genetic component of the disease can greatly advance our knowledge regarding its progression, treatment and prognosis. Single amino-acid variants (SAVs) in the APOE gene have been widely investigated as a risk factor for AD Studies, including genome-wide association studies, meta-analysis based studies, and animal studies, were carried out to investigate the functional importance and pathogenesis potential of APOE SAVs.

View Article and Find Full Text PDF

When considered as orthogonal bases in distinct vector spaces, the unit vectors of polarization directions and the Laguerre-Gaussian modes of polarization amplitude are inseparable, constituting a so-called classical entangled light beam. Equating this classical entanglement to quantum entanglement necessary for computing purpose, we show that the parallelism featured in Shor's factoring algorithm is equivalent to the concurrent light-path propagation of an entangled beam or pulse train. A gedanken experiment is proposed for executing the key algorithmic steps of modular exponentiation and Fourier transform on a target integer N using only classical manipulations on the amplitudes and polarization directions.

View Article and Find Full Text PDF

Broadband 5G communication requires the operation of nonreciprocal devices in the Ku band. A wideband photonic crystal circulator is implemented by introducing two partial-height triangular Ni-Zn ferrites into the AlO ceramic rod-arrays. The asymmetric sizes of the two equilateral triangles paired with self-matching effectively extend the bandwidth of the circulator eight times over that of the symmetric scheme.

View Article and Find Full Text PDF

Dendritic polyphenylenes (PPs) can serve as precursors of nanographenes (NGs) if their structures represent 2D projections without overlapping benzene rings. Here, we report the synthesis of two giant dendritic PPs fulfilling this criteria with 366 and 546 carbon atoms by applying a "layer-by-layer" extension strategy. Although our initial attempts on their cyclodehydrogenation toward the corresponding NGs in solution were unsuccessful, we achieved their deposition on metal substrates under ultrahigh vacuum through the electrospray technique.

View Article and Find Full Text PDF

Synthesis of two dicyclopentaannelated hexa-peri-hexabenzocoronene (PHBC) regioisomers was carried out, using nonplanar oligoaryl precursors with fluorenyl groups: mPHBC 8 with two pentagons in the "meta"-configuration was obtained as a stable molecule, while its structural isomer with the "para"-configuration, pPHBC 16, could be generated and characterized only in situ due to its high chemical reactivity. Both PHBCs exhibit low energy gaps, as reflected by UV-vis-NIR absorption and electrochemical measurements. They also show open-shell singlet ground states according to electron paramagnetic resonance (EPR) measurements and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Immunosensors are molecular recognition-based solid-state biosensing devices, in which the immunochemical reactions are coupled with transducers. As biologic or biochemical substances produced by tumor cells, tumor marker plays an important role in clinical diagnosis and treatment of cancer because its concentration is related to tumor size, clinical stage, and predicting prognosis. Voltammetric immunosensors based on the electrochemical analysis technique provide a sensitive electroanalytical approach for quantitatively detecting tumor markers by measuring the current as a function of the potential.

View Article and Find Full Text PDF

Proton-responsive photochromic molecules are attractive for their ability to react on non-invasive rapid optical stimuli and the importance of protonation/deprotonation processes in various fields. Conventionally, their acidic/basic sites are on hetero-atoms, which are orthogonal to the photo-active π-center. Here, we incorporate azulene, an acid-sensitive pure hydrocarbon, into the skeleton of a diarylethene-type photoswitch.

View Article and Find Full Text PDF

Some nonlinear radiations such as superfluorescence can be understood as cooperative effects between atoms. We regard cooperative radiations as a manifested effect secondary to the intrinsic synchronization among the two-level atoms and propose the entanglement measure, concurrence, as a time-resolved measure of synchronization. Modeled on two cavity-coupled qubits, the evolved concurrence monotonically increases to a saturated level.

View Article and Find Full Text PDF

Multiple fused pentagon-heptagon pairs are frequently found as defects at the grain boundaries of the hexagonal graphene lattice and are suggested to have a fundamental influence on graphene-related materials. However, the construction of sp-carbon skeletons with multiple regularly fused pentagon-heptagon pairs is challenging. In this work, we found that the pentagon-heptagon skeleton of azulene was rearranged during the thermal reaction of an azulene-incorporated organometallic polymer on Au(111).

View Article and Find Full Text PDF

Azulene, the smallest neutral nonalternant aromatic hydrocarbon, serves not only as a prototype for fundamental studies but also as a versatile building block for functional materials because of its unique opto(electronic) properties. Here, we report the on-surface synthesis and characterization of the homopolymer of azulene connected exclusively at the 2,6-positions using 2,6-diiodoazulene as the monomer precursor. As an intermediate to the formation of polyazulene, a gold-(2,6-azulenylene) chain is observed.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are emerging as environmentally friendly, low-cost, and highly tunable building blocks in solar energy conversion architectures, such as solar (fuel) cells. Specifically, GQDs constitute a promising alternative for organometallic dyes in sensitized oxide systems. Current sensitized solar cells employing atomically precise GQDs are based on physisorbed sensitizers, with typically limited efficiencies.

View Article and Find Full Text PDF

It is generally believed that the perpendicular magnetic anisotropy (PMA) plays an important role in stabilizing skyrmion lattices (SkL) in two-dimensional (2D) magnetic systems in which both Heisenberg exchange and Dzyaloshinskii-Moriya interactions co-exist, and the skyrmion sizes in SkLs are mainly determined by the strengths of these two intrinsic interactions. To investigate the details, we employ here a quantum computational approach we develop in recent years to simulate the Néel-type skyrmion lattices formed on a 2D PdFe/Ir(1 1 1)-like film. From our simulated results, we find that: within an external magnetic field applied normal to the film plane, the PMA is indeed able to help induce Néel-type SkLs in a wider field range; however, to stabilize the SkLs, the PMA cannot be too strong, the strengths of the external magnetic field and the maximal PMA must satisfy a sum rule since the effective perpendicular magnetic field generated by these two interactions cannot exceed a largest value.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

We study the absorption spectrum of a probe field by a Λ-type three-level system, which is coupled to a quantized control field through the two upper energy levels. The probe field is applied to the ground and the second excited states. When the quantized control field is in vacuum, we derive a threshold condition to discern vacuum induced transparency (VIT) and vacuum induced Autler-Townes splitting (ATS).

View Article and Find Full Text PDF

Edge functionalization of bottom-up synthesized graphene nanoribbons (GNRs) with anthraquinone and naphthalene/perylene monoimide units has been achieved through a Suzuki coupling of polyphenylene precursors bearing bromo groups, prior to the intramolecular oxidative cyclo-dehydrogenation. High efficiency of the substitution has been validated by MALDI-TOF MS analysis of the functionalized precursors and FT-IR, Raman, and XPS analyses of the resulting GNRs. Moreover, AFM measurements demonstrated the modulation of the self-assembling behavior of the edge-functionalized GNRs, revealing that GNR-PMI formed an intriguing rectangular network.

View Article and Find Full Text PDF

In recent years, quantum image processing is one of the most active fields in quantum computation and quantum information. Image scaling as a kind of image geometric transformation has been widely studied and applied in the classical image processing, however, the quantum version of which does not exist. This paper is concerned with the feasibility of the classical bilinear interpolation based on novel enhanced quantum image representation (NEQR).

View Article and Find Full Text PDF

Hexa-peri-hexabenzocoronene (HBC)-based donor-acceptor dyads were synthesized with three different acceptor units, through two pathways: 1) "pre-functionalization" of monobromo-substituted hexaphenylbenzene prior to the cyclodehydrogenation; and 2) "post-functionalization" of monobromo-substituted HBC after the cyclodehydrogenation. The HBC-acceptor dyads demonstrated varying degrees of intramolecular charge-transfer interactions, depending on the attached acceptor units, which allowed tuning of their photophysical and optoelectronic properties, including the energy gaps. The two synthetic pathways described here can be complementary and potentially be applied for the synthesis of nanographene-acceptor dyads with larger aromatic cores, including one-dimensionally extended graphene nanoribbons.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9ds39lu4ne2rf64mqchf0js03vfi58vk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once