Publications by authors named "Hou Fujiang"

Global climate change and agricultural practices have increased atmospheric nitrogen (N) deposition, significantly affecting the nitrogen cycling process in grasslands. The impact of different N forms on key soil enzyme activities involved in N nitrification, particularly in the saline-alkali grasslands of the Hexi Corridor, using natural grassland as a control (CK) and adding three N treatments: inorganic N (IN), organic N (ON) and a mixed N treatment (MN, with a 4:6 ratio of organic to inorganic N). Our study assessed the effects of these N forms on soil properties and enzyme activities crucial for N cycling.

View Article and Find Full Text PDF

Background: Grazing livestock emits methane through rumen intestinal activity, however, its impact on plant growth in grassland while grazing still has not been explored in detail. Therefore, the study examined the effects of methane pulse spray (MPS), according to grazing intensity, at four grazing intensities (0, 3.6, 5.

View Article and Find Full Text PDF
Article Synopsis
  • Global grassland degradation threatens sustainable socio-economic development, but can be mitigated through targeted grassland improvement measures rooted in pratacultural science.
  • Grassland improvement employs various techniques, including enclosure, fertilization, and irrigation, often in integrated combinations, leading to increased biomass and species richness while maintaining soil health over the short term.
  • A standardized approach emphasizes using grazing-based management to enhance grassland structure and function, recognizing the role of "nuisance" species in supporting ecosystem productivity and biodiversity.
View Article and Find Full Text PDF

Grazing plays a key role in ecosystem biogeochemistry, particularly soil carbon (C) pools. The non-trophic interactions between herbivores and soil processes through herbivore trampling have recently attracted extensive attention. However, their concurrent and legacy effects on the ecosystem properties and processes are still not clear, due to their effects being hard to separate via field experiments.

View Article and Find Full Text PDF

Bacteriophages (phages for short) are the most abundant biological entities on Earth and are natural enemies of bacteria. Genomics and molecular biology have identified subtle and complex relationships among phages, bacteria and their animal hosts. This review covers composition, diversity and factors affecting gut phage, their lifecycle in the body, and interactions with bacteria and hosts.

View Article and Find Full Text PDF
Article Synopsis
  • The trait-based unidimensional plant economics spectrum offers insight into how plants adapt to their environments, but there's still uncertainty about the complex relationships between leaf and root traits influenced by environmental factors and microbial strategies.
  • This study analyzed the relationships between pairs of leaf and fine root traits in alpine meadow plants, revealing two main dimensions: collaboration gradient, which balances lifespan and resource efficiency, and conservation gradient, focusing on resource uptake strategies.
  • It was found that climatic factors primarily drive these traits, with strong connections to soil microbial strategies, suggesting that both leaf and root traits are part of a multidimensional adaptation strategy to their environments that also involves microbial interactions.
View Article and Find Full Text PDF

Grazing is widely used in more than one-forth of global terrestrial ecosystems, with three quarters are distributed on complex topography. Grazing and topography have both resulted in degradation of approximately 49 % of natural grasslands. However, research on the interaction between topography and livestock exclusion on grassland characteristics is scarce.

View Article and Find Full Text PDF

Introduction of alpine grasses to low altitude regions has long been a crucial strategy for enriching germplasm diversity, cultivating and acclimating high-quality species, enhancing ecosystem resilience and adaptability, as well as facilitating ecosystem restoration. However, there is an urgent need to investigate the impacts of planting Gramineae seeds on greenhouse gas (GHG) emissions, particularly during the critical stage of early plant growth. In this study, four species of grass seeds (Stipa breviflora, Poa pratensis, Achnatherum splendens, Elymus nutans) were collected from 19 high-altitude regions surrounding the Qinghai-Tibet Plateau and sown at low-altitude.

View Article and Find Full Text PDF

Grassland health refers to the degree to which the integrity of soil and ecological processes is maintained, which primarily reflects the health status and productivity of grasslands. Evaluating the degree of grassland health is vital for the sustainable develop of grasslands. There are many methods for evaluating grassland health, with advantages and disadvantages for each one.

View Article and Find Full Text PDF

The relationship between plant diversity and the ecosystem carbon pool is important for understanding the role of biodiversity in regulating ecosystem functions. However, it is not clear how the relationship between plant diversity and soil carbon content changes under different grassland use patterns. In a 3-year study from 2013 to 2015, we investigated plant diversity and soil total carbon (TC) content of grasslands in northern China under different grassland utilization methods (grazing, mowing, and enclosure) and climatic conditions.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the differences in annual pasture and native pasture on dry matter (DM) intake, nutrient digestibility, nitrogen (N) and energy utilization, and methane (CH4) emission of grazing sheep, and to provide the basis for rational livestock grazing in salinized regions. The study used 10 male Hu sheep ♀ × thin-tailed Han sheep ♂ rams (20 ± 5 kg) aged 5 mo. Sheep grazing was conducted in annual pasture and native pasture using a 2 × 2 Latin square design.

View Article and Find Full Text PDF

The use of taste agents to regulate the grazing behavior of livestock is a new attempt in pasture management, but the effects on grassland plant communities are not clear at present. Therefore, the following scientific questions need to be addressed: (1) how do different taste agents affected plant community structure by changing feed intake? (2) What was the mechanism of this effect? We proposed the following hypotheses: (1) Salt and sweetener increased feed intake of livestock and decreased the biomass of plant community, while bitters did the opposite. (2) Taste agents can regulate the relationship between plant species, and different taste agents can enhance or weaken the competitiveness of the different plants.

View Article and Find Full Text PDF
Article Synopsis
  • Livestock grazing significantly influences the plant, microbial communities, and soil properties in grassland ecosystems, particularly in the vulnerable Loess Plateau of Northern China.
  • The study found that increasing grazing intensity during summer and winter seasons led to distinct changes in soil properties, plant communities, and microbial diversity, with differing effects on bacteria and fungi.
  • Higher grazing intensity stimulated the growth of certain fast-growing bacteria and saprophytic fungi while reducing pathogenic traits; thus, adopting low grazing intensity is recommended to preserve microbial diversity and overall ecosystem health.
View Article and Find Full Text PDF

Herbivore grazing and nitrogen (N) fertilization affect soil microbial diversity and community composition both in direct and indirect pathways (e.g., via alterations in soil microenvironment and plant communities); however, their combination effects are still largely unexplored.

View Article and Find Full Text PDF

Fungal endophytes are harboured in the leaves of every individual plant host and contribute to plant health, leaf senescence, and early decomposition. In grasslands, fungal endophytes and their hosts often coexist with large herbivores. However, the influence of grazing by large herbivores on foliar fungal endophyte communities remains largely unexplored.

View Article and Find Full Text PDF

Grazing and climate change both contribute to diversity loss and productivity fluctuations. Sensitive climate conditions and long-term grazing activities have a profound influence on community change, particularly in high-altitude mountain grassland ecosystems. However, knowledge about the role of long-term continuous grazing management on diversity, productivity and the regulation mechanisms in fragile grassland ecosystems is still rudimentary.

View Article and Find Full Text PDF

Long-term observations have shown that structure and function of grasslands have changed due to climate change over the past decades. However, little is known about how grasslands respond to climate change along the precipitation gradient, and potential mechanisms remain elusive. Here, we utilize a long-term experiment in typical steppe to explore universal and differential mechanisms of community and functional groups assembly along the precipitation gradient.

View Article and Find Full Text PDF

Few studies on the effects of human activities and global climate change on temporal stability have considered either grazing or precipitation addition (PA). How community stability responds to the interaction between PA and grazing in a single experiment remains unknown. We studied the impact of grazing and PA on the temporal stability of communities in four years field experiment conducted in a typical steppe, adopting a randomized complete block design with grazing was the main block factor and PA was the split block factor.

View Article and Find Full Text PDF

Ligularia virgaurea is the most widely functional native herbage in the alpine meadow pastures of the Qinghai-Tibet Plateau (QTP) and has multiple pharmacological and biological activities. The effect of L. virgaurea as a dietary component on the digestion and metabolism of sheep was evaluated by conducting feeding trials in metabolic cages.

View Article and Find Full Text PDF

Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns.

View Article and Find Full Text PDF

Compared to traditional herbage, functional native herbage is playing more important role in ruminant agriculture through improving digestion, metabolism and health of livestock; however, their effects on rumen microbial communities and hindgut fermentation are still not well understood. The objective of present study was to evaluate the effects of dietary addition of on bacterial communities in rumen and feces of claves. Sixteen 7-month-old male calves were randomly divided into four groups ( = 4).

View Article and Find Full Text PDF

Overgrazing and injudicious nitrogen applications have increased emissions of greenhouse gases from grassland ecosystems. To explore the effects and potential mechanisms of grazing, nitrogen application, and their interaction with greenhouse gas (GHG) emissions, field experiments were conducted on the Qinghai-Tibet Plateau for three consecutive years. Alpine meadow plots were subjected to light (8 sheep ha) and heavy (16 sheep ha) stocking rates, with or without ammonium nitrate (NHNO) (90 kg N ha yr) treatment to simulate soil nitrogen deposition.

View Article and Find Full Text PDF

Several studies have explored the influence of grazing or precipitation addition (PA), two important components of human activities and global climate change on the structure and function of communities. However, the response of communities to a combination of grazing and PA remains largely unexplored. We investigated the impact of grazing and PA on the relationship between aboveground biomass (AGB) and species richness (SR) of communities in three-year field experiments conducted in a typical steppe in the Loess Plateau, using a split-plot design with grazing as the main-plot factor and PA as the split-plot factor.

View Article and Find Full Text PDF

Exogenous fibrolytic enzyme (EFE) products in ruminant nutrition may be an important alternative to meet the increased demands for animal products in the future with reduced environmental impacts. This study aimed to evaluate the dose-response of EFE supplementation on the nutrient digestibility, nitrogen and energy utilization, and methane (CH4) emissions of Tan sheep grazed in summer and winter. A total of 20 Tan wether sheep with an initial body weight of 23.

View Article and Find Full Text PDF

Biological soil crust (BSC) exists widely in many kinds of grassland, its effect on soil mineralization in grazing systems has well been studied, but the impacts and threshold of grazing intensity on BSC have rarely been reported. This study focused on the dynamics of nitrogen mineralization rate in biocrust subsoils affected by grazing intensity. We studied the changes in BSC subsoil physicochemical properties and nitrogen mineralization rates under four sheep grazing intensities (i.

View Article and Find Full Text PDF