Publications by authors named "Hottiger M"

Cancer cells exploit mechanisms to evade immune detection triggered by aberrant self-nucleic acids (NA). PARP7, a key player in this immune evasion strategy, has emerged as a potential target for cancer therapy. PARP7 inhibitors reactivate NA sensing, resulting in type I interferon (IFN) signaling, programmed cell death, anti-tumor immunity, and tumor regression.

View Article and Find Full Text PDF

The emergence of PARP inhibitors as a therapeutic strategy for tumors with high genomic instability, particularly those harboring BRCA mutations, has advanced cancer treatment. However, recent advances have illuminated a multifaceted role of PARP1 beyond its canonical function in DNA damage repair. This review explores the expanding roles of PARP1, highlighting its crucial interplay with the immune system during tumorigenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Under stress, stalled mRNA and proteins form stress granules (SGs) in cells, which some viruses use for their advantage, prompting exploration into whether bacteria also do this.
  • This research shows that the OspC protein family of the bacterium Shigella flexneri can trigger SG formation in infected cells by modifying a key translation initiation factor, leading to a halt in protein synthesis.
  • The ability to induce SGs helps Shigella flexneri replicate within host cells, as strains that cannot form SGs show reduced virulence in mouse models.
View Article and Find Full Text PDF

Pluripotency is established in E4.5 preimplantation epiblast. Embryonic stem cells (ESCs) represent the immortalization of pluripotency, however, their gene expression signature only partially resembles that of developmental ground-state.

View Article and Find Full Text PDF

The intracellular ATP-ribosyltransferases PARP1 and PARP2, contribute to DNA base excision repair (BER) and DNA demethylation and have been implicated in epigenetic programming in early mammalian development. Recently, proteomic analyses identified BER proteins to be covalently poly-ADP-ribosylated by PARPs. The role of this posttranslational modification in the BER process is unknown.

View Article and Find Full Text PDF

PARP7 was reported to promote tumor growth in a cell-autonomous manner and by repressing the antitumor immune response. Nevertheless, the molecular mechanism of how PARP7-mediated ADP-ribosylation exerts these effects in cancer cells remains elusive. Here, we identified PARP7 as a nuclear and cysteine-specific mono-ADP-ribosyltransferase that modifies targets critical for regulating transcription, including the AP-1 transcription factor FRA1.

View Article and Find Full Text PDF

Unlabelled: Metastatic melanoma is either intrinsically resistant or rapidly acquires resistance to targeted therapy treatments, such as MAPK inhibitors (MAPKi). A leading cause of resistance to targeted therapy is a dynamic transition of melanoma cells from a proliferative to a highly invasive state, a phenomenon called phenotype switching. Mechanisms regulating phenotype switching represent potential targets for improving treatment of patients with melanoma.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase-1 (PARP1) binds DNA lesions to catalyse poly(ADP-ribosyl)ation (PARylation) using NAD+ as a substrate. PARP1 plays multiple roles in cellular activities, including DNA repair, transcription, cell death, and chromatin remodelling. However, whether these functions are governed by the enzymatic activity or scaffolding function of PARP1 remains elusive.

View Article and Find Full Text PDF

Though the effect of the recently identified mitochondrial NAD+ transporter SLC25A51 on glucose metabolism has been described, its contribution to other NAD+-dependent processes throughout the cell such as ADP-ribosylation remains elusive. Here, we report that absence of SLC25A51 leads to increased NAD+ concentration not only in the cytoplasm and but also in the nucleus. The increase is not associated with upregulation of the salvage pathway, implying an accumulation of constitutively synthesized NAD+ in the cytoplasm and nucleus.

View Article and Find Full Text PDF

ADP-ribosylation (ADPR) of proteins is catalyzed by ADP-ribosyltransferases, which are targeted by inhibitors (i.e. poly(ADP-ribose) polymerase inhibitors [PARPi]).

View Article and Find Full Text PDF

ADP-ribosylation is a posttranslational modification with many functions ranging from the DNA damage response to transcriptional regulation. While nuclear ADP-ribosylation has been extensively studied in the context of genotoxic stress mediated by PARP1, signaling by other members of the family and in other cellular compartments is still not as well understood. In recent years, however, progress has been made with the development of new tools for detection of ADP-ribosylation by immunofluorescence, which allows for a spatial differentiation of signal intensity for different cellular compartments.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) is a key component of the innate immune response. Upon binding to its receptor, TNFR1, it promotes production of other cytokines via a membrane-bound complex 1 or induces cell death via a cytosolic complex 2. To understand how TNF-induced cell death is regulated, we performed mass spectrometry of complex 2 and identified tankyrase-1 as a native component that, upon a death stimulus, mediates complex 2 poly-ADP-ribosylation (PARylation).

View Article and Find Full Text PDF

Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates.

View Article and Find Full Text PDF

Mass-spectrometry-enabled ADP-ribosylation workflows are developing rapidly, providing researchers a variety of ADP-ribosylome enrichment strategies and mass spectrometric acquisition options. Despite the growth spurt in upstream technologies, systematic ADP-ribosyl (ADPr) peptide mass spectral annotation methods are lacking. HCD-dependent ADP-ribosylome studies are common, but the resulting MS2 spectra are complex, owing to a mixture of b/y-ions and the m/p-ion peaks representing one or more dissociation events of the ADPr moiety (m-ion) and peptide (p-ion).

View Article and Find Full Text PDF

Mouse T cells express the ecto-ADP-ribosyltransferase ARTC2.2, which can transfer the ADP-ribose group of extracellular nicotinamide adenine dinucleotide (NAD) to arginine residues of various cell surface proteins thereby influencing their function. Several targets of ARTC2.

View Article and Find Full Text PDF

ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases.

View Article and Find Full Text PDF

ADP-ribosylation is a posttranslational protein modification, involved in various cellular processes, ranging from DNA-damage repair to apoptosis. While its function has been studied amply with respect to genotoxic stress-associated nuclear ADP-ribosylation, the functional relevance of mitochondrial ADP-ribosylation remains so far poorly studied. This is mainly attributed to the absence of powerful techniques able to detect the modification.

View Article and Find Full Text PDF

Blood and plasma proteins are heavily investigated as biomarkers for different diseases. However, the post-translational modification states of these proteins are rarely analyzed since blood contains many enzymes that rapidly remove these modifications after sampling. In contrast to the well-described role of protein ADP-ribosylation in cells and organs, its role in blood remains mostly uncharacterized.

View Article and Find Full Text PDF

While protein ADP-ribosylation was reported to regulate differentiation and dedifferentiation, it has so far not been studied during transdifferentiation. Here, we found that MyoD-induced transdifferentiation of fibroblasts to myoblasts promotes the expression of the ADP-ribosyltransferase . Comprehensive analysis of the genome architecture by Hi-C and RNA-seq analysis during transdifferentiation indicated that ARTD1 locally contributed to A/B compartmentalization and coregulated a subset of MyoD target genes that were however not sufficient to alter transdifferentiation.

View Article and Find Full Text PDF

Adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD)-dependent post-translational modification that is found on proteins as well as on nucleic acids. While ARTD1/PARP1-mediated poly-ADP-ribosylation has extensively been studied in the past 60 years, comparably little is known about the physiological function of mono-ADP-ribosylation and the enzymes involved in its turnover. Promising technological advances have enabled the development of innovative tools to detect NAD and NAD/NADH (H for hydrogen) ratios as well as ADP-ribosylation.

View Article and Find Full Text PDF

ADP-ribosylation (ADPR) is a posttranslational modification whose importance in oncology keeps increasing due to frequent use of PARP inhibitors (PARPi) to treat different tumor types. Due to the lack of suitable tools to analyze cellular ADPR levels, ADPR's significance for cancer progression and patient outcome is unclear. In this study, we assessed ADPR levels by immunohistochemistry using a newly developed anti-ADP-ribose (ADPr) antibody, which is able to detect both mono- and poly-ADPR.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial NAD acts as a key electron transporter and co-factor for various enzymatic reactions, particularly in ADP-ribosylation, though its specific role in mitochondria is not well understood.
  • Research reveals that mitochondrial ADP-ribosylation increases when the respiratory chain is inhibited and decreases under oxidative stress, suggesting a reversible response to cellular conditions.
  • The study suggests a dynamic relationship between mitochondrial and nuclear ADP-ribosylation, where changes in mitochondrial ADP-ribosylation influence nuclear processes and highlight a potential NAD-mediated communication pathway between the two.
View Article and Find Full Text PDF

KLF4 plays a critical role in determining cell fate responding to various stresses or oncogenic signaling. Here, we demonstrated that KLF4 is tightly regulated by poly(ADP-ribosyl)ation (PARylation). We revealed the subcellular compartmentation for KLF4 is orchestrated by PARP1-mediated PARylation.

View Article and Find Full Text PDF

Hypoxia and inflammation are key factors for colorectal cancer tumorigenesis. The colonic epithelium belongs to the tissues with the lowest partial pressure of oxygen in the body, and chronic inflammation is associated with an increased chance to develop colon cancer. How the colonic epithelium responds to hypoxia and inflammation during tumorigenesis remains to be elucidated.

View Article and Find Full Text PDF

ADP-ribosylation is a reversible post-translational modification of proteins that has been linked to many biological processes. The identification of ADP-ribosylated proteins and particularly of their acceptor amino acids remains a major challenge. The attachment sites of the modification are difficult to localize by mass spectrometry (MS) because of the labile nature of the linkage and the complex fragmentation pattern of the ADP-ribose in MS/MS experiments.

View Article and Find Full Text PDF