Publications by authors named "Hotaka Fukushima"

Posttraumatic stress disorder (PTSD) is a psychiatric disorder associated with traumatic memory, yet its etiology remains unclear. Reexperiencing symptoms are specific to PTSD compared to other anxiety-related disorders. Importantly, reexperiencing can be mimicked by retrieval-related events of fear memory in animal models of traumatic memory.

View Article and Find Full Text PDF

The transcription profile of microglia related to fear conditioning remains unclear. Here, we used Illumina MouseWG-6v2 microarrays to investigate the gene transcription changes in microglia and peripheral monocytes after contextual fear conditioning of C57BL/6 J mice. Mice were trained with or without a single minimized footshock stimulation (0-s or 2-s, 0.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how microglia, a type of brain immune cell, impact the formation and extinction of fear memories in mice, focusing on their gene expression profiles.
  • It was found that during fear memory formation, microglia exhibited increased expression of synapse-related genes while immune-related genes decreased, indicating a shift in their function.
  • After fear memories were extinguished, the changes in synapse-related genes reversed, suggesting a complex interaction between microglia, neuronal activity, and immune responses in fear conditioning.
View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by altered social communication, restricted interests, and stereotypic behaviors. Although the molecular and cellular pathogeneses of ASD remain elusive, impaired neural stem cell differentiation and neuronal migration during cortical development are suggested to be critically involved in ASD. ANK2, which encodes for a cytoskeletal scaffolding protein involved in recruiting membrane proteins into specialized membrane domains, has been identified as a high-confidence ASD risk gene.

View Article and Find Full Text PDF

Neural inflammation is associated with cognitive decline, especially learning and memory. Tumor necrosis factor α (TNFα) is a major cytokine generated during neuroinflammation. Previous studies indicated that TNFα impairs hippocampus-dependent memory including contextual fear and spatial memories.

View Article and Find Full Text PDF

Memory reconsolidation is thought to maintain or enhance an original memory or add new information to the memory. Retrieved inhibitory avoidance (IA) memory is enhanced through memory reconsolidation by activating gene expression in the amygdala, medial prefrontal cortex (mPFC), and hippocampus. However, it remains unclear how these regions interact to reconsolidate/enhance IA memory.

View Article and Find Full Text PDF

Cognitive performance in people varies according to time-of-day, with memory retrieval declining in the late afternoon-early evening. However, functional roles of local brain circadian clocks in memory performance remains unclear. Here, we show that hippocampal clock controlled by the circadian-dependent transcription factor BMAL1 regulates time-of-day retrieval profile.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the effects of heat-killed Lactobacillus brevis SBC8803 on cognitive function and memory, specifically hippocampus-dependent tasks in mice.
  • - Mice that consumed heat-killed SBC8803 showed improved performance in social recognition and contextual fear conditioning tasks, indicating enhanced memory function.
  • - The research also found that this diet increased the survival of newborn neurons in the hippocampus, suggesting SBC8803 promotes adult neurogenesis.
View Article and Find Full Text PDF

The cerebellum regulates complex animal behaviors, such as motor control and spatial recognition, through communication with many other brain regions. The major targets of the cerebellar projections are the thalamic regions including the ventroanterior nucleus (VA) and ventrolateral nucleus (VL). Another thalamic target is the central lateral nucleus (CL), which receives the innervations mainly from the dentate nucleus (DN) in the cerebellum.

View Article and Find Full Text PDF

Transcription factor CREB is believed to play essential roles in the formation of long-term memory (LTM), but not in learning and short-term memory (STM). Surprisingly, we previously showed that transgenic mice expressing a dominant active mutant of CREB (DIEDML) in the forebrain (DIEDML mice) demonstrated enhanced STM and LTM in hippocampal-dependent, rapid, one-trial learning tasks. Here we show that constitutive activation of CREB enhances hippocampal-dependent learning of temporal association in trace fear conditioning and delayed matching-to-place tasks.

View Article and Find Full Text PDF

Forgetting of recent fear memory is promoted by treatment with memantine (MEM), which increases hippocampal neurogenesis. The approaches for treatment of post-traumatic stress disorder (PTSD) using rodent models have focused on the extinction and reconsolidation of recent, but not remote, memories. Here we show that, following prolonged re-exposure to the conditioning context, enhancers of hippocampal neurogenesis, including MEM, promote forgetting of remote contextual fear memory.

View Article and Find Full Text PDF

The proinflammatory cytokine productions in the brain are altered in a process of fear memory formation, indicating a possibility that altered microglial function may contribute to fear memory formation. We aimed to investigate whether and how microglial function contributes to fear memory formation. Expression levels of M1- and M2-type microglial marker molecules in microglia isolated from each conditioned mice group were assessed by real-time PCR and immunohistochemistry.

View Article and Find Full Text PDF

CREB is a pivotal mediator of activity-regulated gene transcription that underlies memory formation and allocation. The contribution of a key CREB cofactor, CREB-regulated transcription coactivator 1 (CRTC1), has, however, remained elusive. Here we show that several constitutive kinase pathways and an activity-regulated phosphatase, calcineurin, converge to determine the nucleocytoplasmic shuttling of CRTC1.

View Article and Find Full Text PDF

Memory retrieval is considered to have roles in memory enhancement. Recently, memory reconsolidation was suggested to reinforce or integrate new information into reactivated memory. Here, we show that reactivated inhibitory avoidance (IA) memory is enhanced through reconsolidation under conditions in which memory extinction is not induced.

View Article and Find Full Text PDF
Article Synopsis
  • CREB is a protein activated by injury, serving as a marker for pain-related changes in the brain and spinal cord, but its direct role in injury-related behavioral sensitization remains unproven.
  • The study found that enhancing CREB activity in the brain improves responses to non-painful stimuli after chronic inflammation or nerve injury, but doesn't significantly affect immediate pain responses from formalin injections or thermal stimuli.
  • These findings provide evidence that CREB activity in the brain is linked to heightened sensitivity to non-painful stimuli (allodynia) in models of chronic pain.
View Article and Find Full Text PDF

Unraveling the mechanisms by which the molecular manipulation of genes of interest enhances cognitive function is important to establish genetic therapies for cognitive disorders. Although CREB is thought to positively regulate formation of long-term memory (LTM), gain-of-function effects of CREB remain poorly understood, especially at the behavioral level. To address this, we generated four lines of transgenic mice expressing dominant active CREB mutants (CREB-Y134F or CREB-DIEDML) in the forebrain that exhibited moderate upregulation of CREB activity.

View Article and Find Full Text PDF

Background: Memory consolidation is a process to stabilize short-term memory, generating long-term memory. A critical biochemical feature of memory consolidation is a requirement for gene expression. Previous studies have shown that fear memories are consolidated through the activation of gene expression in the amygdala and hippocampus, indicating essential roles of these brain regions in memory formation.

View Article and Find Full Text PDF

Mounting evidence suggests that neural oscillations are related to the learning and consolidation of newly formed memory in the mammalian brain. Four to seven Hertz (4-7 Hz) oscillations in the prefrontal cortex are also postulated to be involved in learning and attention processes. Additionally, slow delta oscillations (1-4 Hz) have been proposed to be involved in memory consolidation or even synaptic down scaling during sleep.

View Article and Find Full Text PDF

Reconsolidation and extinction of fear memories are induced by re-exposure to the conditioned stimulus (CS) but they appear to be opposite processes; as the fear memory is maintained or inhibited through reconsolidation and extinction, respectively. More importantly, reconsolidation and extinction are thought to be potential targets for the treatment of Post Traumatic Stress Disorder (PTSD). From this view, it is important to understand mechanisms by which reactivated fear memories are reconsolidated or extinguished.

View Article and Find Full Text PDF

Fragile X syndrome is caused by a lack of fragile X mental retardation protein (FMRP) due to silencing of the FMR1 gene. The metabotropic glutamate receptors (mGluRs) in the central nervous system contribute to higher brain functions including learning/memory, persistent pain, and mental disorders. Our recent study has shown that activation of Group I mGluR up-regulated FMRP in anterior cingulate cortex (ACC), a key region for brain cognitive and executive functions; Ca(2+) signaling pathways could be involved in the regulation of FMRP by Group I mGluRs.

View Article and Find Full Text PDF

During fear conditioning, animals learn an association between a previously neutral or conditioned stimulus (CS) and an aversive or unconditioned stimulus (US). Subsequent reexposure to the CS alone triggers two competing processes. Brief reexposure to the CS initiates reconsolidation processes that serve to stabilize or maintain the original CS-US memory.

View Article and Find Full Text PDF

Previous studies have suggested that calcium/calmodulin-dependent protein kinase IV (CaMKIV) functions as a positive regulator for memory formation and that age-related memory deficits are the result of dysfunctional signaling pathways mediated by cAMP response element-binding protein (CREB), the downstream transcription factor of CaMKIV. Little is known, however, about the effects of increased CaMKIV levels on the ability to form memory in adult and aged stages. We generated a transgenic mouse overexpressing CaMKIV in the forebrain and showed that the upregulation of CaMKIV led to an increase in learning-induced CREB activity, increased learning-related hippocampal potentiation, and enhanced consolidation of contextual fear and social memories.

View Article and Find Full Text PDF
Article Synopsis
  • * The study found that mice with higher levels of CaMKIV showed increased LTP in the anterior cingulate cortex (ACC), which suggests a role in memory enhancement.
  • * Transgenic mice overexpressing CaMKIV demonstrated improved trace fear memory without affecting basic synaptic transmission or sensory thresholds, indicating CaMKIV's specific role in synaptic function related to memory.
View Article and Find Full Text PDF