Publications by authors named "Hosub Jin"

Current silicon-based CMOS devices face physical limitations in downscaling size and power loss, restricting their capability to meet the demands for data storage and information processing of emerging technologies. One possible alternative is to encode the information in a non-volatile magnetic state and manipulate this spin state electronically, as in spintronics. However, current spintronic devices rely on the current-driven control of magnetization, which involves Joule heating and power dissipation.

View Article and Find Full Text PDF

Systems having inherent structural asymmetry retain the Rashba-type spin-orbit interaction, which ties the spin and momentum of electrons in the band structure, leading to coupled spin and charge transport. One of the electrical manifestations of the Rashba spin-orbit interaction is nonreciprocal charge transport, which could be utilized for rectifying devices. Further tuning of the Rashba spin-orbit interaction allows additional functionalities in spin-orbitronic applications.

View Article and Find Full Text PDF

Berry curvature (BC) governs topological phases of matter and generates anomalous transport. When a magnetic field is applied, phonons can acquire BC indirectly through spin-lattice coupling, leading to a linear phonon Hall effect. Here, we show that polar lattice distortion directly couples to a phonon BC dipole, which causes a switchable nonlinear phonon Hall effect.

View Article and Find Full Text PDF

Defect engineering is one of the key technologies in materials science, enriching the modern semiconductor industry and providing good test-beds for solid-state physics. While homogenous doping prevails in conventional defect engineering, various artificial defect distributions have been predicted to induce desired physical properties in host materials, especially associated with symmetry breakings. Here, we show layer-by-layer defect-gradients in two-dimensional PtSe films developed by selective plasma treatments, which break spatial inversion symmetry and give rise to the Rashba effect.

View Article and Find Full Text PDF

We study the electronic properties of a new planar carbon crystal formed through networking biphenylene molecules. Novel electronic features among carbon materials such as zone-center saddle point and peculiar type-II Dirac fermionic states are shown to exist in the low-energy electronic spectrum. The type-II state here has a nearly flat branch and is close to a transition to type I.

View Article and Find Full Text PDF

The pristine graphene described with massless Dirac fermion could bear topological insulator state and ferromagnetism via the band structure engineering with various adatoms and proximity effects from heterostructures. In particular, topological Anderson insulator state was theoretically predicted in tight-binding honeycomb lattice with Anderson disorder term. Here, we introduced physi-absorbed Fe-clusters/adatoms on graphene to impose exchange interaction and random lattice disorder, and we observed Anderson insulator state accompanying with Kondo effect and field-induced conducting state upon applying the magnetic field at around a charge neutral point.

View Article and Find Full Text PDF

A polar conductor, where inversion symmetry is broken, may exhibit directional propagation of itinerant electrons, i.e., the rightward and leftward currents differ from each other, when time-reversal symmetry is also broken.

View Article and Find Full Text PDF

In symmetry-broken crystalline solids, pole structures of Berry curvature (BC) can emerge, and they have been utilized as a versatile tool for controlling transport properties. For example, the monopole component of the BC is induced by the time-reversal symmetry breaking, and the BC dipole arises from a lack of inversion symmetry, leading to the anomalous Hall and nonlinear Hall effects, respectively. Based on first-principles calculations, we show that the ferroelectricity in a tin telluride monolayer produces a unique BC distribution, which offers charge- and spin-controllable photocurrents.

View Article and Find Full Text PDF

Two-dimensional materials equipped with strong spin-orbit coupling can display novel electronic, spintronic, and topological properties originating from the breaking of time or inversion symmetry. A lot of interest has focused on the valley degrees of freedom that can be used to encode binary information. By performing ab initio time-dependent density functional simulation on MoS, here we show that the spin is not only locked to the valley momenta but strongly coupled to the optical E″ phonon that lifts the lattice mirror symmetry.

View Article and Find Full Text PDF

Topological electronics is a new field that uses topological charges as current-carrying degrees of freedom. For topological electronics applications, systems should host topologically distinct phases to control the topological domain boundary through which the topological charges can flow. Due to their multiple Dirac cones and the π-Berry phase of each Dirac cone, graphene-like electronic structures constitute an ideal platform for topological electronics; graphene can provide various topological phases when incorporated with large spin-orbit coupling and mass-gap tunability via symmetry-breaking.

View Article and Find Full Text PDF

Halide perovskite solar cells are a recent ground-breaking development achieving power conversion efficiencies exceeding 18%. This has become possible owing to the remarkable properties of the AMX3 perovskites, which exhibit unique semiconducting properties. The most efficient solar cells utilize the CH3NH3PbI3 perovskite whose band gap, Eg, is 1.

View Article and Find Full Text PDF

We investigated the metal-insulator transition (MIT) driven by all-in-all-out (AIAO) antiferromagnetic ordering in the 5d pyrochlore Cd(2)Os(2)O(7) using optical spectroscopy and first-principles calculations. We showed that the temperature evolution in the band-gap edge and free carrier density were consistent with rigid upward (downward) shifts of electron (hole) bands, similar to the case of Lifshitz transitions. The delicate relationship between the band gap and free carrier density provides experimental evidence for the presence of an AIAO metallic phase, a natural consequence of such MITs.

View Article and Find Full Text PDF

In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials.

View Article and Find Full Text PDF

The entanglement of the spin and orbital degrees of freedom through the spin-orbit coupling has been actively studied in condensed matter physics. In several iridium oxide systems, the spin-orbital entangled state, identified by the effective angular momentum jeff, can host novel quantum phases. Here we show that a series of lacunar spinel compounds, GaM4X8 (M=Nb, Mo, Ta and W and X=S, Se and Te), gives rise to a molecular jeff state as a new spin-orbital composite on which the low-energy effective Hamiltonian is based.

View Article and Find Full Text PDF

The Rashba effect is spin degeneracy lift originated from spin-orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic-inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity.

View Article and Find Full Text PDF

The new semiconductor LiPbSb3S6 crystallizes in the space group P21/c. The structure is a member of the lillianite homologous series and is composed of layers of PbS archetype Sb/Li-S separated by trigonal-prismatic-coordinated Pb/Li. Electronic band structure calculations indicate an indirect band gap, with direct gaps lying very close in energy.

View Article and Find Full Text PDF

Mixed S(2-/)S(1-) oxidation states have been discovered in the new quaternary compound NaBa2Cu3S5. Synthesized from the reaction of Cu in a molten alkali metal/polysulfide flux, the compound crystallizes in monoclinic space group C2/m with a = 16.5363(7) Å, b = 5.

View Article and Find Full Text PDF

The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity.

View Article and Find Full Text PDF

We predict a quantum phase transition from normal to topological insulators in the 5d transition metal oxide Na2IrO3, where the transition can be driven by the change of the long-range hopping and trigonal crystal field terms. From the first-principles-derived tight-binding Hamiltonian, we determine the phase boundary through the parity analysis. In addition, our first-principles calculations for Na2IrO3 model structures show that the interlayer distance can be an important parameter for the existence of a three-dimensional strong topological insulator phase.

View Article and Find Full Text PDF

We report that the chalcohalide compound Tl(6)SeI(4) is a promising material for efficient X-ray and γ-ray detection. This material has a higher figure of merit than the current state-of-the-art material for room-temperature operation, Cd(0.9)Zn(0.

View Article and Find Full Text PDF

When the three-dimensional topological insulators Bi2Se3 and Bi2Te3 have an interface with vacuum, i.e., a surface, they show remarkable features such as topologically protected and spin-momentum locked surface states.

View Article and Find Full Text PDF

We investigated the electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, x-ray absorption measurements, and first-principles band calculations. The system was found to be well described by novel effective total angular momentum Jeff states, in which the relativistic spin-orbit coupling is fully taken into account under a large crystal field. Despite delocalized Ir 5d states, the Jeff states form such narrow bands that even a small correlation energy leads to the Jeff=1/2 Mott ground state with unique electronic and magnetic behaviors, suggesting a new class of Jeff quantum spin driven correlated-electron phenomena.

View Article and Find Full Text PDF