Publications by authors named "Hostomsky Z"

Background: Poly(ADP-ribose) polymerase-1 (PARP) inhibitors (PARPi) exploit tumour-specific defects in homologous recombination DNA repair and continuous dosing is most efficacious. Early clinical trial data with rucaparib suggested that it caused sustained PARP inhibition. Here we investigate the mechanism of this durable inhibition and potential exploitation.

View Article and Find Full Text PDF

Evaluating the effects of novel drugs on appropriate tumor models has become crucial for developing more effective therapies that target highly tumorigenic and drug-resistant cancer stem cell (CSC) populations. In this study, we demonstrate that a subset of cancer cells with CSC properties may be enriched into tumor spheroids under stem cell conditions from a non-small cell lung cancer cell line. Treating these CSC-like cells with gemcitabine alone and a combination of gemcitabine and the novel CHK1 inhibitor PF-00477736 revealed that PF-00477736 enhances the anti-proliferative effect of gemcitabine against both the parental and the CSC-like cell populations.

View Article and Find Full Text PDF

The stress-inducible transcription factor, nuclear factor (NF)-κB induces genes involved in proliferation and apoptosis. Aberrant NF-κB activity is common in cancer and contributes to therapeutic-resistance. Poly(ADP-ribose) polymerase-1 (PARP-1) is activated during DNA strand break repair and is a known transcriptional co-regulator.

View Article and Find Full Text PDF

Background: Mutations in BRCA1 and BRCA2 (BRCA1/2), components of the homologous recombination DNA repair (HRR) pathway, are associated with hereditary breast and ovarian cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors are selectively cytotoxic to animal cells with defective HRR, but results in human cancer cells have been contradictory. We undertook, to our knowledge, the first comprehensive in vitro and in vivo investigations of the antitumor activity of the PARP inhibitor AG014699 in human cancer cells carrying mutated or epigenetically silenced BRCA1/2.

View Article and Find Full Text PDF

Background: Temozolomide shows activity against medulloblastoma, the most common malignant paediatric brain tumour. Poly(ADP-ribose) polymerase (PARP) inhibitors enhance temozolomide activity in extracranial adult and paediatric human malignancies.

Methods: We assessed the effect of AG-014699, a clinically active PARP inhibitor, on temozolomide-induced growth inhibition in human medulloblastoma models.

View Article and Find Full Text PDF

Purpose: Poly(ADP-ribose) polymerase (PARP) inhibitors selectively target homologous recombination (HR)-defective cells and show good clinical activity in hereditary breast and ovarian cancer associated with BRCA1 or BRCA2 mutations. A high proportion (up to 50%) of sporadic epithelial ovarian cancers (EOC) could be deficient in HR due to genetic or epigenetic inactivation of BRCA1/BRCA2 or other HR genes. Therefore, there is a potential for extending the use of PARP inhibitors to these patients if HR status can be identified.

View Article and Find Full Text PDF

Purpose: High-risk neuroblastoma is characterized by poor survival rates, and the development of improved therapeutic approaches is a priority. Temozolomide and topotecan show promising clinical activity against neuroblastoma. Poly(ADP-ribose) polymerase-1 (PARP-1) promotes DNA repair and cell survival following genotoxic insult; we postulated that its inhibition may enhance the efficacy of these DNA-damaging drugs in pediatric cancers.

View Article and Find Full Text PDF

The design, synthesis, and biological evaluation of potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) are reported. A novel series of 3,4-dihydro-2H-[1,4]diazepino[6,7,1-hi]indol-1-ones were designed using a combination of protein structure-based drug design, molecular modeling, and structure-activity relationships (SAR). These novel submicromolar inhibitors possess a tricyclic ring system conformationally restricting the benzamide in the preferred cis orientation.

View Article and Find Full Text PDF

The synthesis and biological evaluation of a new series of amine-substituted 2-arylbenzimidazole-4-carboxamide inhibitors of the DNA-repair enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is reported. The introduction of an amine substituent at the 2-aryl position is not detrimental to activity, with most inhibitors exhibiting K(i) values for PARP-1 inhibition in the low nanomolar range. Two compounds in this series were found to potentiate the cytotoxicity of the DNA-methylating agent temozolomide by 4-5-fold in a human colorectal cancer cell line.

View Article and Find Full Text PDF

Purpose: Mismatch repair (MMR) deficiency confers resistance to temozolomide, a clinically active DNA-methylating agent. The purpose of the current study was to investigate the reversal mechanism of temozolomide resistance by the potent novel poly(ADP-ribose) polymerase (PARP)-1 inhibitor, AG14361, in MMR-proficient and -deficient cells.

Experimental Design: The effects of AG14361, in comparison with the methylguanine DNA methyltransferase inhibitor, benzylguanine, on temozolomide-induced growth inhibition were investigated in matched pairs of MMR-proficient (HCT-Ch3, A2780, and CP70-ch3) and -deficient (HCT116, CP70, and CP70-ch2) cells.

View Article and Find Full Text PDF

Background: Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates the repair of DNA strand breaks. Inhibiting PARP-1 increases the cytotoxicity of DNA-damaging chemotherapy and radiation therapy in vitro. Because classical PARP-1 inhibitors have limited clinical utility, we investigated whether AG14361, a novel potent PARP-1 inhibitor (inhibition constant <5 nM), enhances the effects of chemotherapy and radiation therapy in human cancer cell cultures and xenografts.

View Article and Find Full Text PDF

The nuclear enzyme poly(ADP-ribose) polymerase (PARP-1) facilitates DNA repair, and is, therefore, an attractive target for anticancer chemo- and radio-potentiation. Novel benzimidazole-4-carboxamides (BZ1-6) and tricyclic lactam indoles (TI1-5) with PARP-1 K(i) values of <10 nM have been identified. Whole cell PARP-1 inhibition, intrinsic cell growth inhibition, and chemopotentiation of the cytotoxic agents temozolomide (TM) and topotecan (TP) were evaluated in LoVo human colon carcinoma cells.

View Article and Find Full Text PDF

Novel tricyclic benzimidazole carboxamide poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been synthesized. Several compounds were found to be powerful chemopotentiators of temozolomide and topotecan in both A549 and LoVo cell lines. In vitro inhibition of PARP-1 was confirmed by direct measurement of NAD+ depletion and ADP-ribose polymer formation caused by chemically induced DNA damage.

View Article and Find Full Text PDF

A series of novel compounds have been designed that are potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1), and the activity and physical properties have been characterized. The new structural classes, 3,4,5,6-tetrahydro-1H-azepino[5,4,3-cd]indol-6-ones and 3,4-dihydropyrrolo[4,3,2-de]isoquinolin-5-(1H)-ones, have conformationally locked benzamide cores that specifically interact with the PARP-1 protein. The compounds have been evaluated with in vitro cellular assays that measure the ability of the PARP-1 inhibitors to enhance the effect of cytotoxic agents against cancer cell lines.

View Article and Find Full Text PDF

The nuclear enzyme poly(ADP-ribose) polymerase (PARP) facilitates the repair of DNA strand breaks and is implicated in the resistance of cancer cells to certain DNA-damaging agents. Inhibitors of PARP have clinical potential as resistance-modifying agents capable of potentiating radiotherapy and the cytotoxicity of some forms of cancer chemotherapy. The preclinical development of 2-aryl-1H-benzimidazole-4-carboxamides as resistance-modifying agents in cancer chemotherapy is described.

View Article and Find Full Text PDF

Potent poly(ADP-ribose) polymerase (PARP) inhibitors have been developed that potentiate the cytotoxicity of ionizing radiation and anticancer drugs. The biological effects of two novel PARP inhibitors, NU1025 (8-hydroxy-2-methylquinazolin-4-[3H]one, Ki = 48 nM) and NU1085 [2-(4-hydroxyphenyl)benzamidazole-4-carboxamide, Ki = 6 nM], in combination with temozolomide (TM) or topotecan (TP) have been studied in 12 human tumor cell lines (lung, colon, ovary, and breast cancer). Cells were treated with increasing concentrations of TM or TP +/- NU1025 (50, 200 microM) or NU1085 (10 microM) for 72 h.

View Article and Find Full Text PDF

In mammalian cells, damaged bases in DNA are corrected by the base excision repair pathway which is divided into two distinct pathways depending on the length of the resynthesized patch, replacement of one nucleotide for short-patch repair, and resynthesis of several nucleotides for long-patch repair. The involvement of poly(ADP-ribose) polymerase-1 (PARP-1) in both pathways has been investigated by using PARP-1-deficient cell extracts to repair single abasic sites derived from uracil or 8-oxoguanine located in a double-stranded circular plasmid. For both lesions, PARP-1-deficient cell extracts were about half as efficient as wild-type cells at the polymerization step of the short-patch repair synthesis, but were highly inefficient at the long-patch repair.

View Article and Find Full Text PDF

Background: Hepatitis C virus (HCV) NS3 proteinase activity is required for the release of HCV nonstructural proteins and is thus a potential antiviral target. The enzyme requires a protein cofactor NS4A, located downstream of NS3 on the polyprotein, for activation and efficient processing.

Objectives: Comparison of the proteinase three-dimensional structure before and after NS4A binding should help to elucidate the mechanism of NS4A-dependent enzyme activation.

View Article and Find Full Text PDF

Current pharmacological agents for human immunodeficiency virus (HIV) infection include drugs targeted against HIV reverse transcriptase and HIV protease. An understudied therapeutic target is HIV integrase, an essential enzyme that mediates integration of the HIV genome into the host chromosome. The dicaffeoylquinic acids (DCQAs) and the dicaffeoyltartaric acids (DCTAs) have potent activity against HIV integrase in vitro and prevent HIV replication in tissue culture.

View Article and Find Full Text PDF

NS3 proteinase of hepatitis C virus (HCV), contained within the N-terminal domain of the NS3 protein, is a chymotrypsin-like serine proteinase responsible for processing of the nonstructural region of the HCV polyprotein. In this study, we examined the sensitivity of the NS3 proteinase to divalent metal ions, which is unusual behavior for this proteinase class. By using a cell-free coupled transcription-translation system, we found that HCV polyprotein processing can be activated by Zn2+ (and, to a lesser degree, by Cd2+, Pb2+, and Co2+) and inhibited by Cu2+ and Hg2+ ions.

View Article and Find Full Text PDF

Current research indicates that the nucleocapsid protein (NCp7) of human immunodeficiency virus type 1 (HIV-1) interacts with a variety of RNA substrates during the progression of the viral life cycle. The RNA features specifically recognized by the protein, however, have yet to be identified. SELEX was used to generate a set of RNAs whose affinities for nucleocapsid were on the order of 2 x 10(-9) M.

View Article and Find Full Text PDF

During replication of hepatitis C virus (HCV), the final steps of polyprotein processing are performed by a viral proteinase located in the N-terminal one-third of nonstructural protein 3. The structure of NS3 proteinase from HCV BK strain was determined by X-ray crystallography at 2.4 angstrom resolution.

View Article and Find Full Text PDF