Publications by authors named "Hosselet C"

Article Synopsis
  • Next-generation cysteine-based antibody-drug-conjugates (ADCs) improve therapeutic outcomes by allowing for precise drug attachment to antibodies.
  • *The development of a new antibody manufacturing process using cysteine metabolic engineering and a unique capping technology simplifies the production of these ADCs, enhancing their quality.
  • *This innovative method could pave the way for combining different site-specific conjugation techniques, potentially leading to the creation of multi-drug ADCs that target cancer more effectively.
View Article and Find Full Text PDF

Objectives: The medical management of patients, which involves securing the drug circuit, is a major public health objective. As part of quality management, a number of risk assessment and risk management tools in care units are validated and available. However, medication management in radiopharmacy departments represents a complex and specific process.

View Article and Find Full Text PDF

The approval of ado-trastuzumab emtansine (T-DM1) in HER2 metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1.

View Article and Find Full Text PDF

A potent class of DNA-damaging agents, natural product bis-intercalator depsipeptides (NPBIDs), was evaluated as ultrapotent payloads for use in antibody-drug conjugates (ADCs). Detailed investigation of potency (both in cells and via biophysical characterization of DNA binding), chemical tractability, and in vitro and in vivo stability of the compounds in this class eliminated a number of potential candidates, greatly reducing the complexity and resources required for conjugate preparation and evaluation. This effort yielded a potent, stable, and efficacious ADC, PF-06888667, consisting of the bis-intercalator, SW-163D, conjugated via an N-acetyl-lysine-valine-citrulline- p-aminobenzyl alcohol- N, N-dimethylethylenediamine (AcLysValCit-PABC-DMAE) linker to an engineered variant of the anti-Her2 mAb, trastuzumab, catalyzed by transglutaminase.

View Article and Find Full Text PDF

A series of novel derivatives exhibiting high affinity and selectivity towards the COX-2 enzyme in the (aza) indazole series was developed. A short synthetic route involving a bromination/arylation sequence under microwave irradiation and direct C-H activation were established in the indazole and azaindazole series respectively. In vitro assays were conducted and structural modifications were carried out on these scaffolds to furnish compound 16 which exhibited effective COX-2 inhibitory activity, with IC values of 0.

View Article and Find Full Text PDF

Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) that has demonstrated clinical benefit for patients with HER2 metastatic breast cancer; however, its clinical activity is limited by inherent or acquired drug resistance. The molecular mechanisms that drive clinical resistance to T-DM1, especially in HER2 tumors, are not well understood. We used HER2 cell lines to develop models of T-DM1 resistance using a cyclical dosing schema in which cells received T-DM1 in an "on-off" routine until a T-DM1-resistant population was generated.

View Article and Find Full Text PDF

Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates.

View Article and Find Full Text PDF

As part of our efforts to develop new classes of tubulin inhibitor payloads for antibody-drug conjugate (ADC) programs, we developed a tubulysin ADC that demonstrated excellent in vitro activity but suffered from rapid metabolism of a critical acetate ester. A two-pronged strategy was employed to address this metabolism. First, the hydrolytically labile ester was replaced by a carbamate functional group resulting in a more stable ADC that retained potency in cellular assays.

View Article and Find Full Text PDF

Lat1 (SLC7A5) is an amino acid transporter often required for tumor cell import of essential amino acids (AA) including Methionine (Met). Met is the obligate precursor of S-adenosylmethionine (SAM), the methyl donor utilized by all methyltransferases including the polycomb repressor complex (PRC2)-specific EZH2. Cell populations sorted for surface Lat1 exhibit activated EZH2, enrichment for Met-cycle intermediates, and aggressive tumor growth in mice.

View Article and Find Full Text PDF

The kidney provides an important contribution to permit the fetus to successfully transition to an independent existence by production of urine with significantly different osmolality compared with plasma. Although recent work has uncovered many aspects of the maturation and regulation of the renal concentrating and diluting mechanism, understanding of how alterations in the expression of aquaporin (AQP) water channels contribute to the formation of urine in the perinatal period is incomplete. Here, we report that both AQP-2 and -3 are expressed during fetal life as early as embryonic d 18 in ureteric buds of rat kidneys, where each is localized to the apical and basolateral membranes of epithelial cells, respectively.

View Article and Find Full Text PDF

Regulation of total body water balance in amphibians by antidiuretic hormone (ADH) contributed to their successful colonization of terrestrial habitats approximately 200-300 million years ago. In the mammalian kidney, ADH modulates epithelial cell apical membrane water permeability (Pf) by fusion and retrieval of cytoplasmic vesicles containing water channel proteins called aquaporins (AQPs). To determine the role of AQPs in ADH-elicited Pf in amphibians, we have identified and characterized a unique AQP from Bufo marinus called AQP toad bladder (AQP-TB).

View Article and Find Full Text PDF

Antidiuretic hormone (ADH) increases toad bladder granular cell apical membrane osmotic water permeability (Pf) by insertion of cytoplasmic vesicles containing water channels into the apical membrane. Termination of ADH stimulation results in endocytosis of water channel-containing membrane. In previous work, we have purified water channel-containing vesicles and demonstrated that they contain 12 major protein bands when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

View Article and Find Full Text PDF

Antidiuretic hormone (ADH) stimulation of toad bladder granular cells rapidly increases the osmotic water permeability (Pf) of their apical membranes by insertion of highly selective water channels. Before ADH stimulation, these water channels are stored in large cytoplasmic vesicles called aggrephores. ADH causes aggrephores to fuse with the apical membrane.

View Article and Find Full Text PDF