Publications by authors named "Hosseinmardi N"

Glutamate is a key factor in opiate addiction. Glial glutamate transporter-1 (GLT-1) plays a prominent role in glutamate homeostasis. Therefore, different regimens of ceftriaxone as a GLT-1 activator were prescribed to determine whether modulating GLT-1 prevents morphine dependence or withdrawal syndrome.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used three behavioral tasks (Morris water maze, Passive avoidance, and T-maze place preference) to assess the importance of these hippocampal regions for each task and confirmed the tasks' sensitivity through lidocaine injections.
  • * Findings indicate that silencing astrocytes with fluorocitrate in the dorsal hippocampus impair performance in certain tasks, while the intermediate and ventral regions show variable effects, suggesting astrocytes have specific roles in memory related to aversive and rewarding experiences in the hippoc
View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations and imbalances in multiple brain neurochemical systems, particularly the serotonergic neurotransmission. This includes changes in serotonin (5-HT) levels, aberrations in 5-HT transporter activity, and decreased synthesis and expression of 5-HT receptors (5-HT7Rs). The exact role of the brain 5-HT system in the development of ASD remains unclear, with conflicting evidence on its involvement.

View Article and Find Full Text PDF

Social hierarchy is a fundamental feature of social organization that can influence brain and emotional processing regarding social ranks. Several areas, including the medial prefrontal cortex (mPFC), the hippocampus, and the basolateral nucleus of the amygdala (BLA), are recognized to be involved in the regulation of emotional processing. However, its delicate structural correlates in brain regions are poorly understood.

View Article and Find Full Text PDF

Epilepsy is a neurological condition distinguished by recurrent and unexpected seizures. Astrocytic channels and transporters are essential for maintaining normal neuronal functionality. The astrocytic water channel, aquaporin-4 (AQP4), which plays a pivotal role in regulating water homeostasis, is a potential target for epileptogenesis.

View Article and Find Full Text PDF

Prenatal stress (PS) results from a maternal experience of stressful events during pregnancy, which has been associated with an increased risk of behavioral disorders including substance abuse and anxiety in the offspring. PS is known to result in heightened dopamine release in the ventral tegmental area (VTA), in part through the effects of corticotropin-releasing hormone, which directly excites dopaminergic cells. It has recently been suggested that agmatine plays a role in modulating anxiety-like behaviors.

View Article and Find Full Text PDF

Aims: Drug addiction is an aberrant learning process that involves the recruitment of memory systems. We have previously demonstrated that morphine exposure causes maladaptive synaptic plasticity which involved hippocampal glial cells, especially astrocytes. Morphine addiction has been associated with astrocytic connexin 43 (Cx43), which plays a role in synaptic homeostasis.

View Article and Find Full Text PDF

Adolescence represents a distinctive vulnerable period when exposure to stressful situations including opioid exposure can entail lasting effects on brain and can change neural mechanisms involved in memory formation for drug-associated cues, possibly increasing vulnerability of adolescents to addiction. Herein, the effects of acute adolescent morphine exposure (AAME, two injections of 2.5 mg/kg SC morphine on PND 31) were therefore investigated 6 weeks later (adulthood) on avoidance memory and hippocampal long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in transvers slices from the ventral hippocampus in adult male rats using field recordings technique.

View Article and Find Full Text PDF

Social communication and interaction deficits, memory impairment, and anxiety-like behavior are characterized in many people identified with autism spectrum disorder (ASD). A thorough understanding of the specific aspects that contribute to the deficiencies associated with ASD can aid research into the etiology of the disorder while also providing targets for more effective intervention. As part of the ASD pathophysiology, alterations in synaptogenesis and abnormal network connections were seen in high-order brain areas, which control social behavior and communication.

View Article and Find Full Text PDF

This study aimed to examine the effects of the ventral tegmental area (VTA) and the locus coeruleus (LC) patterned electrical stimulation on hippocampal-dependent learning and hippocampal neurogenesis in adult mouse. For this, mice were given unilateral electrical stimulation of VTA or LC using phasic or tonic stimulation protocols. Behavior acquisition rates were evaluated using the Barnes maze (BM) and a passive avoidance (PA) task.

View Article and Find Full Text PDF

Pharmacoresistant temporal lobe epilepsy affects millions of people around the world with uncontrolled seizures and comorbidities, like anxiety, being the most problematic aspects calling for novel therapies. The intrahippocampal kainic acid model of temporal lobe epilepsy is an appropriate rodent model to evaluate the effects of novel interventions, including glycolysis inhibition, on epilepsy-induced alterations. Here, we investigated kainic acid-induced changes in the dorsal hippocampus (dHPC) and basolateral amygdala (BLA) circuit and the efficiency of a glycolysis inhibitor, 2-deoxy D-glucose (2-DG), in resetting such alterations using simultaneous local field potentials (LFP) recording and elevated zero-maze test.

View Article and Find Full Text PDF

Adolescence is a neurobiological critical period for neurodevelopmental processes. Adolescent opioid exposure can affect cognitive abilities via regional-specific lasting changes in brain structure and function. The current study was therefore designed to assess the long-term effects of adolescent morphine exposure on dark avoidance memory and synaptic plasticity of the ventral hippocampal CA1.

View Article and Find Full Text PDF

Epidemiological studies show the prevalence of opioid use, misuse and abuse in adolescents, which imposes social and economic accountability worldwide. Chronic opioid exposure, especially in adolescents, may have lasting effects on emotional behaviors that persist into adulthood. The current experiments were therefore designed to study the effects of sustained opioid exposure during adolescence on anxiety-like behaviors.

View Article and Find Full Text PDF

Epilepsy is characterized by the unpredictability but recurrence of seizures caused by the synchronized aberrant firing of neuronal populations. It has been shown that astrocytes (one of the most prominent glial cells) are ideally positioned to induce or contribute to neural network synchronization. Although astrocytes cannot generate action potentials, they have the capacity to sense and respond to neuronal activity, which allows them to function as homeostatic regulators of synaptic interactions.

View Article and Find Full Text PDF

Temporal lobe epilepsy is the most drug-resistant type with the highest incidence among the other focal epilepsies. Metabolic manipulations are of great interest among others, glycolysis inhibitors like 2-deoxy D-glucose (2-DG) being the most promising intervention. Here, we sought to investigate the effects of 2-DG treatment on cellular and circuit level electrophysiological properties using patch-clamp and local field potentials recordings and behavioral alterations such as depression and anxiety behaviors, and changes in nitric oxide signaling in the intrahippocampal kainic acid model.

View Article and Find Full Text PDF

Autism spectrum disorder is a neurodevelopmental disorder characterized by sensory abnormalities, social skills impairment and cognitive deficits. Although recent evidence indicated that induction of autism-like behavior in animal models causes abnormal neuronal excitability, the impact of autism on neuronal properties is still an important issue. Thus, new findings at the cellular level may shed light on the pathophysiology of autism and may help to find effective treatment strategies.

View Article and Find Full Text PDF

Introduction: Seizures may result from the hyperexcitable neuronal activity of the brain. Multiple neurotransmitter receptors, including orexin (OX) and endocannabinoids interfere with forming the synaptic responses linked to the seizures. Therefore, this study investigates the involvement of OX-1 (OX1R) and endocannbinoid-1 (CB1R) receptors in the kainate- induced excitability in the synaptic field responses.

View Article and Find Full Text PDF

Introduction: The Basolateral Amygdala (BLA) substantially affects neuronal transmission and synaptic plasticity processes through the dentate gyrus. Orexin neuropeptides play different roles in the sleep/wakefulness cycle, feeding, learning, and memory. The present study aimed to investigate the function of the orexin receptors of the BLA in the hippocampal local interneuron circuits.

View Article and Find Full Text PDF

Opioid exposure during adolescence, a crucial period of neurodevelopment, has lasting neurological and behavioral consequences and affects the cognitive functions in adulthood. This study investigated the effects of adolescent morphine exposure in spatial learning and memory and synaptic plasticity of the CA1 area of the dorsal hippocampus. Adolescent Wistar rats received increasing doses of morphine for 1, 5, and 10 days.

View Article and Find Full Text PDF

Repeated exposure to drugs of abuse can lead to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters. Such alterations in neurotransmission modify synaptic plasticity which causes addictive-like behaviors. Our previous study shed light on the involvement of glial cells in morphine-induced behavioral responses.

View Article and Find Full Text PDF

Social life necessitates cognitive competence to meet the dynamic demands of social development. The formation of dominance hierarchy is a general phenomenon in social groups. As an essential element of executive and cognitive function, working memory could influence and be influenced by social status in a dominance hierarchy.

View Article and Find Full Text PDF

Opioid abuse modifies synaptic plasticity, which leads to behavioral changes, such as morphine dependence, but the mechanism remains poorly understood. Glial cells play an important role in the modulation of synaptic plasticity and are involved in addictive-like behaviors. The indisputable role of glutamate in opiate addiction has been shown.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a severe life-long neuropsychiatric disorder. Alterations and imbalance of several neurochemical systems may be involved in ASD pathophysiology, of them, serotonergic neurotransmission dysfunction and deficiency may underlie behavioral abnormalities associated with ASD. However, the functional importance of serotonergic receptors, particularly 5HT7 receptors in ASD pathology remains poorly defined.

View Article and Find Full Text PDF

Cyclooxygenase (COX) plays a critical role in synaptic plasticity. Therefore, long-term administration of acetylsalicylic acid (ASA) and its main metabolite, salicylate, as a COX inhibitor may impair synaptic plasticity and subsequently memory formation. Although different studies have tried to explain the effects of ASA and sodium salicylate (SS) on learning and memory, the results are contradictory and the mechanisms are not exactly known.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is associated with epileptiform activity in the hippocampus; however, the underlying mechanisms have not been fully determined. The goal was to understand what changes take place in intrinsic neuronal physiology in the hippocampus after blunt force trauma to the cortex. In this context, hyperpolarization-activated cation current (I ) currents may have a critical role in modulating the neuronal intrinsic membrane excitability; therefore, its contribution to the TBI-induced hyperexcitability was assessed.

View Article and Find Full Text PDF