Objectives: To clarify the mechanistic basis for the success or failure of noninvasive ventilation (NIV) in acute hypoxemic respiratory failure (AHRF).
Design: We created digital twins based on mechanistic computational models of individual patients with AHRF.
Setting: Interdisciplinary Collaboration in Systems Medicine Research Network.
Background And Objective: The primary function of the human respiratory system is gas and moisture exchange, and conditioning inhaled air to prevent damage to the lungs and alveoli. In a fire incident, exposed soft tissues contract and the respiratory system may be severely damaged, possibly leading to respiratory failure and even respiratory arrest. The purpose of this study is to numerically simulate hot airflow in the human upper airway and trachea to investigate heat and moisture transfer and induced thermal injuries.
View Article and Find Full Text PDF