Publications by authors named "Hossein Salami"

Large Language Models (LLM) such as the Generative-Pretrained-Transformer (GPT) and Large-Language-Model-Meta-AI (LLaMA) have attracted much attention. There is strong evidence that these models perform remarkably well in various natural language processing tasks. However, how to leverage them in domain-specific use cases and drive value remains an open question.

View Article and Find Full Text PDF

Visible and subvisible particles are a quality attribute in sterile pharmaceutical samples. A common method for characterizing and quantifying pharmaceutical samples containing particulates is imaging many individual particles using high-throughput instrumentation and analyzing the populations data. The analysis includes conventional metrics such as the particle size distribution but can be more sophisticated by interpreting other visual/morphological features.

View Article and Find Full Text PDF

Imaging is commonly used as a characterization method in the pharmaceuticals industry, including for quantifying subvisible particles in solid and liquid formulations. Extracting information beyond particle size, such as classifying morphological subpopulations, requires some type of image analysis method. Suggested methods to classify particles have been based on pre-determined morphological features or use supervised training of convolutional neural networks to learn image representations in relation to ground truth labels.

View Article and Find Full Text PDF