Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels.
View Article and Find Full Text PDFArtificial organs and organs-on-a-chip (OoC) are of great clinical and scientific interest and have recently been made by additive manufacturing, but depend on, and benefit from, biocompatible, biodegradable, and soft materials. Poly(octamethylene maleate (anhydride) citrate (POMaC) meets these criteria and has gained popularity, and as in principle, it can be photocured and is amenable to vat-photopolymerization (VP) 3D printing, but only low-resolution structures have been produced so far. Here, a VP-POMaC ink is introduced and 3D printing of 80 µm positive features and complex 3D structures is demonstrated using low-cost (≈US$300) liquid-crystal display (LCD) printers.
View Article and Find Full Text PDFWhile there has been considerable success in the three-dimensional bioprinting of relatively large standalone filamentous tissues, the fabrication of solid fibers with ultrafine diameters or those cannular featuring ultrathin walls remains a particular challenge. Here, an enabling strategy for (bio)printing of solid and hollow fibers whose size ranges could be facilely adjusted across a broad spectrum, is reported, using an aqueous two-phase embedded (bio)printing approach combined with specially designed cross-linking and extrusion methods. The generation of standalone, alginate-free aqueous architectures using this aqueous two-phase strategy allowed freeform patterning of aqueous bioinks, such as those composed of gelatin methacryloyl, within the immiscible aqueous support bath of poly(ethylene oxide).
View Article and Find Full Text PDFOne significant drawback of existing bioprinted tissues is their lack of shelf-availability caused by complications in both fabrication and storage. Here, we report a cryobioprinting strategy for simultaneously fabricating and storing cell-laden volumetric tissue constructs through seamlessly combining extrusion bioprinting and cryopreservation. The cryobioprinting performance was investigated by designing, fabricating, and storing cell-laden constructs made of our optimized cryoprotective gelatin-based bioinks using a freezing plate with precisely controllable temperature.
View Article and Find Full Text PDFScars composed of fibrous connective tissues are natural consequences of injury upon incisional wound healing in soft tissues. Hydrogels that feature a sustained presentation of immunomodulatory cytokines are known to modulate wound healing. However, existing immunomodulatory hydrogels lack interconnected micropores to promote cell ingrowth.
View Article and Find Full Text PDFDue to the poor mechanical properties of many hydrogel bioinks, conventional 3D extrusion bioprinting is usually conducted based on the X-Y plane, where the deposited layers are stacked in the Z-direction with or without the support of prior layers. Herein, a technique is reported, taking advantage of a cryoprotective bioink to enable direct extrusion bioprinting in the vertical direction in the presence of cells, using a freezing plate with precise temperature control. Of interest, vertical 3D cryo-bioprinting concurrently allows the user to create freestanding filamentous constructs containing interconnected, anisotropic microchannels featuring gradient sizes aligned in the vertical direction, also associated with enhanced mechanical performances.
View Article and Find Full Text PDFBiological tissues hinge on blood perfusion and mechanical toughness to function. Injectable hydrogels that possess both high permeability and toughness have profound impacts on regenerative medicine but remain a long-standing challenge. To address this issue, injectable, pore-forming double-network hydrogels are fabricated by orchestrating stepwise gelation and phase separation processes.
View Article and Find Full Text PDFBioprinting, within the emerging field of biofabrication, aims at the fabrication of functional biomimetic constructs. Different 3D bioprinting techniques have been adapted to bioprint cell-laden bioinks. However, single-material bioprinting techniques oftentimes fail to reproduce the complex compositions and diversity of native tissues.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2021
Extrusion-based three-dimensional (3D) printing is an emerging technology for the fabrication of complex structures with various biological and biomedical applications. The method is based on the layer-by-layer construction of the product using a printable ink. The material used as the ink should possess proper rheological properties and desirable performances.
View Article and Find Full Text PDFCell-laden scaffolds of architecture and mechanics that mimic those of the host tissues are important for a wide range of biomedical applications but remain challenging to bioprint. To address these challenges, we report a new method called triggered micropore-forming bioprinting. The approach can yield cell-laden scaffolds of defined architecture and interconnected pores over a range of sizes, encompassing that of many cell types.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFInjectable hydrogels are increasingly used for in situ tissue regeneration and wound healing. Ideally, an injectable implant should promote the recruitment of cells from the surrounding native tissue and allow cells to migrate freely as they generate a new extracellular matrix network. Nanocomposite hydrogels such as carbon nanotube (CNT)-loaded hydrogels have been hypothesized to promote cell recruitment and cell migration relative to unloaded ones.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2019
Porous composite hydrogels were prepared using glycol chitosan as the matrix, glyoxal as the chemical crosslinker, and carbon nanotubes (CNTs) as the fibers. Both carboxylic and hydroxylic functionalized CNTs were used. The homogeneity of CNTs dispersion was evaluated using scanning electron microscopy.
View Article and Find Full Text PDF