Publications by authors named "Hossein Omidian"

Article Synopsis
  • Niosomes, a type of vesicular nanocarrier, are being researched for their potential in controlled drug delivery, offering advantages over liposomes like improved stability and ease of production.
  • This study developed a specific niosomal formulation for the drug temozolomide (TMZ), using a method that tested different lipid compositions to optimize drug loading and release.
  • The results showed that the optimized niosomes achieved a 73.23% drug entrapment efficiency and sustained release for 24 hours, while liposomes released their drug much faster, highlighting the superior stability of niosomes.
View Article and Find Full Text PDF

This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques.

View Article and Find Full Text PDF

Nerve injury can significantly impair motor, sensory, and autonomic functions. Understanding nerve degeneration, particularly Wallerian degeneration, and the mechanisms of nerve regeneration is crucial for developing effective treatments. This manuscript reviews the use of advanced hydrogels that have been researched to enhance nerve regeneration.

View Article and Find Full Text PDF

Biomimetic gels are synthetic materials designed to mimic the properties and functions of natural biological systems, such as tissues and cellular environments. This manuscript explores the advancements and future directions of injectable biomimetic gels in biomedical applications and highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties. Despite these advancements, challenges such as mechanical resilience, controlled degradation rates, and scalable manufacturing remain.

View Article and Find Full Text PDF

This perspective paper explores the synergistic potential of blockchain and artificial intelligence (AI) in transforming healthcare. It begins with an overview of blockchain's role in healthcare data management, security, the pharmaceutical supply chain, clinical trials, and health insurance. The discussion then shifts to the impact of AI on healthcare, followed by an examination of integrated AI-blockchain platforms and their benefits.

View Article and Find Full Text PDF

This manuscript explores the use of nanostructured chitosan for intranasal drug delivery, targeting improved therapeutic outcomes in neurodegenerative diseases, psychiatric care, pain management, vaccination, and diabetes treatment. Chitosan nanoparticles are shown to enhance brain delivery, improve bioavailability, and minimize systemic side effects by facilitating drug transport across the blood-brain barrier. Despite substantial advancements in targeted delivery and vaccine efficacy, challenges remain in scalability, regulatory approval, and transitioning from preclinical studies to clinical applications.

View Article and Find Full Text PDF

This manuscript explores the transformative potential of swellable microneedles (MNs) in drug delivery and diagnostics, addressing critical needs in medical treatment and monitoring. Innovations in hydrogel-integrated MN arrays facilitate controlled drug release, thereby expanding treatment options for chronic diseases and conditions that require precise dosage control. The review covers challenges, such as scalability, patient compliance, and manufacturing processes, as well as achievements in advanced manufacturing, biocompatibility, and versatile applications.

View Article and Find Full Text PDF

This manuscript explores the use of lipid nanoparticles (LNPs) in addressing the pivotal challenges of lung cancer treatment, including drug delivery inefficacy and multi-drug resistance. LNPs have significantly advanced targeted therapy by improving the precision and reducing the systemic toxicity of chemotherapeutics such as doxorubicin and paclitaxel. This manuscript details the design and benefits of various LNP systems, including solid lipid-polymer hybrids, which offer controlled release and enhanced drug encapsulation.

View Article and Find Full Text PDF

The multifaceted role of quantum dots (QDs) in breast cancer research highlights significant advancements in diagnostics, targeted therapy, and drug delivery systems. This comprehensive review addresses the development of precise imaging techniques for early cancer detection and the use of QDs in enhancing the specificity of therapeutic delivery, particularly in challenging cases like triple-negative breast cancer (TNBC). The paper also discusses the critical understanding of QDs' interactions with cancer cells, offering insights into their potential for inducing cytotoxic effects and facilitating gene therapy.

View Article and Find Full Text PDF

This multifaceted landscape of long-acting gels in diverse medical fields, aims to enhance therapeutic outcomes through localized treatment and controlled drug release. The objective involves advancements spanning cancer treatment, immunotherapy, diabetes management, neuroendocrine disorders, ophthalmic applications, contraception, HIV/AIDS treatment, chronic diseases, wound care, and antimicrobial treatments. It explores the potential of long-acting gels to offer sustained and extended drug release, targeted therapy, and innovative administration routes while addressing limitations such as scalability challenges and regulatory hurdles.

View Article and Find Full Text PDF

This manuscript explores self-healing hydrogels as innovative solutions for diverse wound management challenges. Addressing antibiotic resistance and tailored wound care, these hydrogels exhibit promising outcomes, including accelerated wound closure and tissue regeneration. Advancements in multifunctional hydrogels with controlled drug release, antimicrobial properties, and real-time wound assessment capabilities signal a significant leap toward patient-centered treatments.

View Article and Find Full Text PDF

This manuscript covers the latest advancements and persisting challenges in the domain of tissue engineering, with a focus on the development and engineering of hydrogel scaffolds. It highlights the critical role of these scaffolds in emulating the native tissue environment, thereby providing a supportive matrix for cell growth, tissue integration, and reducing adverse reactions. Despite significant progress, this manuscript emphasizes the ongoing struggle to achieve an optimal balance between biocompatibility, biodegradability, and mechanical stability, crucial for clinical success.

View Article and Find Full Text PDF

This study explores the dynamic field of 3D-printed hydrogels, emphasizing advancements and challenges in customization, fabrication, and functionalization for applications in biomedical engineering, soft robotics, and tissue engineering. It delves into the significance of tailored biomedical scaffolds for tissue regeneration, the enhancement in bioinks for realistic tissue replication, and the development of bioinspired actuators. Additionally, this paper addresses fabrication issues in soft robotics, aiming to mimic biological structures through high-resolution, multimaterial printing.

View Article and Find Full Text PDF

The development of superabsorbent hydrogels is experiencing a transformative era across industries. While traditional synthetic hydrogels have found broad utility, their non-biodegradable nature has raised environmental concerns, driving the search for eco-friendlier alternatives. Cellulose-based superabsorbents, derived from sustainable sources, are gaining prominence.

View Article and Find Full Text PDF

Oxidative stress (OS) plays a crucial role in disease development. Astaxanthin (ATX), a valuable natural compound, may reduce OS and serve as a treatment for diseases like neurodegenerative disorders and cancer. regulates antioxidant enzymes and OS management.

View Article and Find Full Text PDF

Bioinspired polymers have emerged as a promising field in biomaterials research, offering innovative solutions for various applications in biomedical engineering. This manuscript provides an overview of the advancements and potential of bioinspired polymers in tissue engineering, regenerative medicine, and biomedicine. The manuscript discusses their role in enhancing mechanical properties, mimicking the extracellular matrix, incorporating hydrophobic particles for self-healing abilities, and improving stability.

View Article and Find Full Text PDF

Curcumin, a potent active compound found in turmeric and Curcuma xanthorrhiza oil, possesses a wide range of therapeutic properties, including antibacterial, anti-inflammatory, antioxidant, and wound healing activities. However, its clinical effectiveness is hindered by its low bioavailability and rapid elimination from the body. To overcome these limitations, researchers have explored innovative delivery systems for curcumin.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality globally. Despite significant advancements in the development of pharmacological therapies, the challenges of targeted drug delivery to the cardiovascular system persist. Innovative drug-delivery systems have been developed to address these challenges and improve therapeutic outcomes in CVDs.

View Article and Find Full Text PDF

Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability.

View Article and Find Full Text PDF

Conductive hydrogels have gained significant attention for their extensive applications in healthcare monitoring, wearable sensors, electronic devices, soft robotics, energy storage, and human-machine interfaces. To address the limitations of conductive hydrogels, researchers are focused on enhancing properties such as sensitivity, mechanical strength, electrical performance at low temperatures, stability, antibacterial properties, and conductivity. Composite materials, including nanoparticles, nanowires, polymers, and ionic liquids, are incorporated to improve the conductivity and mechanical strength.

View Article and Find Full Text PDF

Injectable hydrogels have gained popularity for their controlled release, targeted delivery, and enhanced mechanical properties. They hold promise in cardiac regeneration, joint diseases, postoperative analgesia, and ocular disorder treatment. Hydrogels enriched with nano-hydroxyapatite show potential in bone regeneration, addressing challenges of bone defects, osteoporosis, and tumor-associated regeneration.

View Article and Find Full Text PDF

The utilization of nanotechnology has brought about notable advancements in the field of pediatric medicine, providing novel approaches for drug delivery, disease diagnosis, and tissue engineering. Nanotechnology involves the manipulation of materials at the nanoscale, resulting in improved drug effectiveness and decreased toxicity. Numerous nanosystems, including nanoparticles, nanocapsules, and nanotubes, have been explored for their therapeutic potential in addressing pediatric diseases such as HIV, leukemia, and neuroblastoma.

View Article and Find Full Text PDF

Cardiovascular diseases, such as myocardial infarction, are considered a significant global burden and the leading cause of death. Given the inability of damaged cardiac tissue to self-repair, cell-based tissue engineering and regeneration may be the only viable option for restoring normal heart function. To maintain the normal excitation-contraction coupling function of cardiac tissue, uniform electronic and ionic conductance properties are required.

View Article and Find Full Text PDF

Bone tumors are relatively rare, which are complex cancers and primarily involve the long bones and pelvis. Bone cancer is mainly categorized into osteosarcoma (OS), chondrosarcoma, and Ewing sarcoma. Of these, OS is the most intimidating cancer of the bone tissue, which is mostly found in the log bones in young children and older adults.

View Article and Find Full Text PDF

Thermoresponsive polymers have seen extensive use in the development of stimuli-responsive drug formulations for oral, buccal, nasal, ocular, topical, rectal, parenteral, and vaginal routes of administration. Despite their great potential, their use has been limited by various obstacles, such as undesirable high polymer concentration, wide gelation temperature, low gel strength, poor mucoadhesiveness, and short retention. Mucoadhesive polymers have been suggested to improve the mucoadhesive features of thermoresponsive gels, leading to increased drug bioavailability and efficacy.

View Article and Find Full Text PDF