Publications by authors named "Hossein Nejat Pishkenari"

Directed transportation of materials at molecular scale is important due to its crucial role in the development of nanoelectromechanical devices, particularly the directional movements along the carbon nanotubes (CNTs), due to the applications of CNTs as nano-manipulators, confined reactors, and drug or other materials delivery systems. In the present investigation, we evaluate the movements of C60 fullerenes on the surface of the cone-shaped CNTs. The fullerene molecules indicate directed motion toward the narrower end of CNTs, which is due to the potential energy gradient along the nanotube length.

View Article and Find Full Text PDF

The surface rolling molecular machines are proposed to perform tasks and carrying molecular payloads on the substrates. As a result, controlling the surface motion of these molecular machines is of interest for the design of nano-transportation systems. In this study, we evaluate the motion of the nanocar on the graphene nanoribbons with strain gradient, through the molecular dynamics (MD) simulations, and theoretical relations.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the motion of surface-rolling nanomachines, which have potential applications in nanotransportation systems by carrying molecular payloads on surfaces.
  • Using molecular dynamics simulations, researchers observed that carbon-based nanovehicles face higher energy barriers and lower movement efficiency on silicene compared to other materials like graphene.
  • They introduced a nanoroad structure to limit the motion of these nanomachines and found that applying a thermal gradient helps direct their movement towards lower energy regions for better controllability.
View Article and Find Full Text PDF

Controlling the maneuverability of nanocars and molecular machines on the surface is essential for the targeted transportation of materials and energy at the nanoscale. Here, we evaluate the motion of fullerene, as the most popular candidate for use as a nanocar wheel, on the graphene nanoribbons with strain gradients based on molecular dynamics (MD), and theoretical approaches. The strain of the examined substrates linearly decreases by 20%, 16%, 12%, 8%, 4%, and 2%.

View Article and Find Full Text PDF

With the synthesis of nanocar structures the idea of transporting energy and payloads on the surface became closer to reality. To eliminate the concern of diffusive surface motion of nanocars, in this study, we evaluate the motion of C and C-based nanovehicles on graphene and hexagonal boron-nitride (BN) surfaces using molecular dynamics simulations and potential energy analysis. Utilizing the graphene-hBN hybrid substrate, it has been indicated that C is more stable on boron-nitride impurity regions in the hybrid substrate and an energy barrier restricts the motion to the boron-nitride impurity.

View Article and Find Full Text PDF

Investigation of nanomachine swarm motion is useful in the design of molecular transportation systems as well as in understanding the assembly process on the surface. Here, we evaluate the motion of the clusters of nanocars on graphene surfaces, using molecular dynamics (MD) simulations. The mechanism of motion of single nanocars is evaluated by considering the rotation of the wheels, direction of the nanocars' speed and comparing the characteristics of the surface motion of nanocars and similar absorbed molecules.

View Article and Find Full Text PDF

Understanding the motion characteristics of fullerene clusters on the graphene surface is critical for designing surface manipulation systems. Toward this purpose, using the molecular dynamics method, we evaluated six clusters of fullerenes including 1, 2, 3, 5, 10, and 25 molecules on the graphene surface, in the temperature range of 25 to 500 K. First, the surface motion of clusters is studied at 200 K and lower temperatures, in which fullerenes remain as a single group.

View Article and Find Full Text PDF

In addition to its biological importance, DPhPC lipid bilayers are widely used in droplet bilayers, study of integral membrane proteins, drug delivery systems as well as patch-clamp electrophysiology of ion channels, yet their mechanical properties are not fully measured. Herein, we examined the effect of the ether linkage on the mechanical properties of ester- and ether-DPhPC lipid bilayers using all-atom molecular dynamics simulation. The values of area per lipid, thickness, intrinsic lateral pressure profile, order parameter, and elasticity moduli were estimated using various computational frameworks and were compared with available experimental values.

View Article and Find Full Text PDF

We provide a comprehensive computational characterization of surface motion of two types of nanomachines with four C "wheels": a flexible chassis Nanocar and a rigid chassis Nanotruck. We study the nanocars' lateral and rotational diffusion as well as the wheels' rolling motion on two kinds of graphene substrates-flexible single-layer graphene which may form surface ripples and an ideally flat graphene monolayer. We find that the graphene surface ripples facilitate the translational diffusion of Nanocar and Nanotruck, but have little effect on their surface rotation or the rolling of their wheels.

View Article and Find Full Text PDF

Newly synthesized nanocars have shown great potential to transport molecular payloads. Since wheels of nanocars dominate their motion, the study of the wheels helps us to design a suitable surface for them. We investigated C thermal diffusion on the hexagonal boron-nitride (h-BN) monolayer as the wheel of nanocars.

View Article and Find Full Text PDF

Molecular machines, such as nanocars, have shown promising potential for various tasks, including manipulation at the nanoscale. In this paper, we examined the influence of temperature gradients on nanocar and nanotruck motion as well as C60 - as their wheel - on a flat gold surface under various conditions. We also compared the accuracy and computational cost of two different approaches for generating the temperature gradient.

View Article and Find Full Text PDF

In this study, a novel artificial intelligence-based approach is presented to directly estimate the surface topography. To this aim, performance of different artificial intelligence-based techniques, including the multi-layer perceptron neural, radial basis function neural, and adaptive neural fuzzy inference system networks, in estimation of the sample topography is investigated. The results demonstrate that among the designed observers, the multi-layer perceptron method can estimate surface characteristics with higher accuracy than the other methods.

View Article and Find Full Text PDF

Dynamical lumped modeling of Trolling-mode AFM in manipulation of bio-samples is presented. The combination of high accuracy and compatibility with physiological conditions makes AFM a unique tool for studying biological materials in liquid medium. However, AFM microcantilever suffers from severe sensitivity degradation and noise intensification while operating in liquid; the large hydrodynamic drag between the cantilever and the surrounding liquid overwhelms the tip-sample interaction forces that are important in controlling the process.

View Article and Find Full Text PDF

Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software.

View Article and Find Full Text PDF

A new method for guiding the motion of fullerene and fullerene-based nanocars is introduced in this paper. The effects of non-flat substrates on the motion of C, a nanocar and a nanotruck are investigated at different conditions and temperatures. Their behavior is studied using two different approaches: analyzing the variation in potential energy and conducting all-atom classical molecular dynamics simulations.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the behavior of self-propelled rods in a quasi two-dimensional setting, examining their interactions with rigid rings and each other using a specialized potential.
  • The rods can either be attached to the rings or move freely, allowing for varied dynamics within the system.
  • The findings reveal that these complex particles demonstrate behaviors similar to active Brownian particles and exhibit characteristics of cell-like motility, including random walks and circling movements.
View Article and Find Full Text PDF

Trolling mode atomic force microscope (TR-Mode AFM) significantly reduces the hydrodynamic drag generated during operation in liquid environments. This is achieved by utilizing a long nanoneedle and keeping the cantilever out of liquid. In this research, a continuous mathematical model is developed to study TR-Mode AFM dynamics near a sample submerged in the liquid.

View Article and Find Full Text PDF

Background: Small scale robotics have attracted growing attention for the prospect of targeting and accessing cell-sized sites, necessary for high precision biomedical applications and drug/gene delivery. The loss of controlled gene therapy, inducing systemic side effects and reduced therapeutic efficiency, can be settled utilizing these intelligent carriers.

Methods: Newly proposed solutions for the main challenges of control, power supplying, gene release and final carrier extraction/degradation have shifted these smart miniature robots to the point of being employed for practical applications of transferring oligonucleotides (pDNA, siRNA, mRNA, etc.

View Article and Find Full Text PDF

Atomic force microscopy (AFM), as an indispensable tool for nanoscale characterization, presents major drawbacks for operation in a liquid environment arising from the large hydrodynamic drag on the vibrating cantilever. The newly introduced 'Trolling mode' (TR-mode) AFM resolves this complication by using a specialized nanoneedle cantilever that keeps the cantilever outside of the liquid. Herein, a mechanical model with a lumped mass was developed to capture the dynamics of such a cantilever with a nanoneedle tip.

View Article and Find Full Text PDF

This paper focuses on the influences of the tip mass ratio (the ratio of the tip mass to the cantilever mass), on the excitation of higher oscillation eigenmodes and also on the tip-sample interaction forces in tapping mode atomic force microscopy (TM-AFM). A precise model for the cantilever dynamics capable of accurate simulations is essential for the investigation of the tip mass effects on the interaction forces. In the present work, the finite element method (FEM) is used for modeling the AFM cantilever to consider the oscillations of higher eigenmodes oscillations.

View Article and Find Full Text PDF

The finite element method and molecular dynamics simulations are used for modeling the AFM microcantilever dynamics and the tip-sample interaction forces, respectively. Molecular dynamics simulations are conducted to calculate the tip-sample force data as a function of tip height at different lateral positions of the tip with respect to the sample. The results demonstrate that in the presence of nonlinear interaction forces, higher eigenmodes of the microcantilever are excited and play a significant role in the tip and sample elastic deformations.

View Article and Find Full Text PDF

In this paper, a novel robust adaptive control method is proposed for controlling the Lorenz chaotic attractor. A new backstepping controller for the Lorenz system based on the Lyapunov stability theorem is proposed to overcome the singularity problem that appeared in using the typical backstepping control method. By exploiting the property of the system, the resulting controller is shown to be singularity free and the closed loop system is globally stable.

View Article and Find Full Text PDF