Background: The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates.
View Article and Find Full Text PDFSeed amplification assays (SAAs) are a promising avenue for the early diagnosis of neurodegenerative diseases. However, when amplifying fibrils from patient-derived samples in multiwell plates, it is currently highly challenging to accurately quantify the aggregates. It is therefore desirable to transfer such assays into a digital format in microemulsion droplets to enable direct quantification of aggregate numbers.
View Article and Find Full Text PDFA new super-branched amylopectin with longer exterior chains was produced from normal maize starch by modification with branching enzyme followed by 4-α-glucanotransferase, and applied for co-entrapment of a curcumin-loaded emulsion in alginate beads. The network structure of the gel beads was obtained with Ca-cross-linked alginate and a modest load of retrograded starch. The dual enzyme modified starch contained more and longer α-1,6-linked branch chains than single enzyme modified and unmodified starches and showed superior resistance to digestive enzymes.
View Article and Find Full Text PDFChem Biodivers
October 2023
Some novel inhibitors based on the (benzo[d]thiazol-2-yl)-1-phenylmethanimine derivatives were designed to reduce the aggregation process in Alzheimer's disease. These structures seem to mimic stilbene-like scaffold, while the benzothiazole moiety "locks" the thioflavin T binding site. Other inhibitors were designed based on 2-((benzo[d]thiazol-2-ylimino)methyl)-5-(benzyloxy)-1-methylpyridin-4(H)-one derivatives.
View Article and Find Full Text PDFFunctional amyloids (FA) are proteins which are evolutionarily optimized to form highly stable fibrillar structures that strengthen the bacterial biofilm matrix. FA such as CsgA () and FapC () are secreted to the bacterial surface where they integrate into growing fibril structures projecting from the outer membrane. FA are exposed to membrane surfaces in this process, but it remains unclear how membranes can interact with FA and potentially affect the self-assembly.
View Article and Find Full Text PDFThe use of biomolecules in food matrices and encapsulation systems is, as in other areas, moving towards greener solutions and a center piece here is the complex coacervation between natural anionic polysaccharides and proteins. Both alginate and β-lactoglobulin (β-Lg) are used in different sectors and have been shown to coacervate at pH < 5.2.
View Article and Find Full Text PDFThe present research comes up with a novel DNA-loaded poly-L-lysine (PLL)/hyaluronan (HA) nanocarrier (DNA-loaded PLL/HA NCs) for gene delivery applications, as a promising candidate for gene delivery into diverse cells. A straightforward approach was employed to prepare such a nanosystem through masking DNA-loaded PLL molecules by HA. Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to analyse the interaction of the molecules as well as the physicochemical properties of the NCs.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
December 2022
Co-delivery of anticancer drugs and biologics can provide synergetic effects and outperform single delivery therapies. Here, a nanoparticle (NP) system for co-delivery of methotrexate (MTX) and STAT3 siRNA has been developed and tested . Mesoporous silica nanoparticles (MSNs) were functionalized with chitosan (ch) by covalent grafting mediated by aminopropyl triethoxysilane (APTES) via glutaraldehyde as the linker.
View Article and Find Full Text PDFNanoparticles (NPs) can modulate protein aggregation and fibril formation in the context of amyloid diseases. Understanding the mechanism of this action remains a critical next step in developing nanomedicines for the treatment or prevention of Parkinson's disease. α-Synuclein (α-Syn) can undergo interactions of different strength with nanoparticles, and these interactions can be prevented by the presence of a protein corona (PC) acquired during the exposure of NPs to serum proteins.
View Article and Find Full Text PDFRes Pharm Sci
February 2021
Background And Purpose: Radicals produced by Fenton and Haber-Weiss reactions play detrimental roles in our body. Some oxidized proteins as toxic configurations are identified in amyloid-β deposits. These deposits mostly occur in conditions, such as Alzheimer's disease.
View Article and Find Full Text PDFThanks in large part to the seminal work of Steve White and his colleagues, we appreciate the "ordered complexity" of the lipid bilayer and how it impacts the incorporation of integral membrane proteins as well as more peripherally associated proteins. Steve's work also provides a vital foundation to tackle another challenge: cytotoxic oligomeric complexes which accumulate in various neurodegenerative diseases. These oligomers have a relatively fluid structure and interact with many different proteins in the cell, but their main target is thought to be the phospholipid membrane, either the plasma membrane or internal organelles such as the mitochondria.
View Article and Find Full Text PDFThe current understanding of the biological identity that nanoparticles may acquire in a given biological milieu is mostly inferred from the hard component of the protein corona (HC). The composition of soft corona (SC) proteins and their biological relevance have remained elusive due to the lack of analytical separation methods. Here, we identify a set of specific corona proteins with weak interactions at silica and polystyrene nanoparticles by using an in situ click-chemistry reaction.
View Article and Find Full Text PDFThere is an intense search for natural compounds that can inhibit the oligomerization and fibrillation of α-synuclein (α-Syn), whose aggregation is key to the development of Parkinson's disease (PD). is a medicinal herb widely used in Middle Eastern food, ceremonies, and perfumes. The herb is known to contain many different polyphenols.
View Article and Find Full Text PDFNanoparticles can acquire a biomolecular corona with a species-specific biological identity. However, "non-self" incompatibility of recipient biological systems is often not considered, for example, when rodents are used as a model organism for preclinical studies of biomolecule-inspired nanomedicines. Using zebrafish embryos as an emerging model for nanobioimaging, here we unravel the fate of intravenously injected 70 nm SiO nanoparticles with a protein corona preformed from fetal bovine serum (FBS), representing a non-self biological identity.
View Article and Find Full Text PDFThe α-synuclein (αSN) amyloid fibrillization process is known to be a crucial phenomenon associated with neuronal loss in various neurodegenerative diseases, most famously Parkinson's disease. The process involves different aggregated species and ultimately leads to formation of β-sheet rich fibrillar structures. Despite the essential role of αSN aggregation in the pathoetiology of various neurological disorders, the characteristics of various assemblies are not fully understood.
View Article and Find Full Text PDFOxidative stress induced by salinity is a prime cause of cell death when Na toxicity becomes unbearable. We explored the effect of rosmarinic acid (RA) on the Solanum tuberosum L. cv.
View Article and Find Full Text PDFSelf-assembly of proteins to β-sheet rich amyloid fibrils is commonly observed in various neurodegenerative diseases. However, amyloid also occurs in the extracellular matrix of bacterial biofilm, which protects bacteria from environmental stress and antibiotics. Many strains produce functional amyloid where the main component is the highly fibrillation-prone protein FapC.
View Article and Find Full Text PDFThe ability of proteins to aggregate to form well-organized β-sheet rich amyloid fibrils is increasingly viewed as a general if regrettable property of the polypeptide chain. Aggregation leads to diseases such as amyloidosis and neurodegeneration in humans and various mammalian species but is also found in a functional variety in both animals and microbes. However, there are to our knowledge no reports of amyloid formation in plants.
View Article and Find Full Text PDFAggregation of the natively unfolded protein α-synuclein (α-syn) is key to the development of Parkinson's disease (PD). Some nanoparticles (NPs) can inhibit this process and in turn be used for treatment of PD. Using simulation strategies, we show here that α-syn self-assembly is electrostatically driven.
View Article and Find Full Text PDFAggregation of α-synuclein (αSN) is implicated in neuronal degeneration in Parkinson's disease and has prompted searches for natural compounds inhibiting αSN aggregation and reducing its tendency to form toxic oligomers. Oil from the olive tree ( L.) represents the main source of fat in the Mediterranean diet and contains variable levels of phenolic compounds, many structurally related to the compound oleuropein.
View Article and Find Full Text PDFα-Synuclein (αSN) aggregation is central to the etiology of Parkinson's disease (PD). Large-scale screening of compounds to identify aggregation inhibitors is challenged by stochastic αSN aggregation and difficulties in detecting early-stage oligomers (αSOs). We developed a high-throughput screening assay combining SDS-stimulated αSN aggregation with FRET to reproducibly detect initial stages in αSN aggregation.
View Article and Find Full Text PDFThe protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-independent fashion.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2018
Despite extensive studies of the effects of herbal-derived small molecules in the biopharmaceutical and biomedical sciences, their low solubility and stability remain a challenge. Here we focus on baicalein, a small molecule showing potential against neurodegenerative diseases such as Parkinson's and Alzheimer's. However, therapeutic usage in vivo is challenged by low solubility and stability.
View Article and Find Full Text PDFAmyloid fibrillation is a prevalent phenomenon in different proteins and peptides, which results in a variety of disorders. Over the last decade, implementation of nanoparticles (NPs), with or without drugs, is considered as a promising approach to protect against the aggregation process of amyloid proteins. In this study, we investigated the effect of human serum albumin NPs (HSA NPs) on the fibrillation of Hen Egg White Lysozyme (HEWL).
View Article and Find Full Text PDF