Grassland community diversity plays a vital role in maintaining the functionality of grassland ecosystems, influencing processes such as nutrient cycling and supporting ecosystem multifunctionality (EMF). Long-term fencing impacts biodiversity and nutrient dynamics, but its effects alongside grazing practices are not well understood. This study examined grazing intensity's effects on community structure, leaf traits, diversity, and ecosystem functions in a 38-year-fenced grassland, through a four-year grazing experiment.
View Article and Find Full Text PDFBackground: Resistance to dicamba in Chenopodium album was first documented over a decade ago, however, the molecular basis of dicamba resistance in this species has not been elucidated. In this research, the resistance mechanism in a dicamba-resistant C. album phenotype was investigated using a transcriptomics (RNA-sequence) approach.
View Article and Find Full Text PDFFertilization could influence ecosystem structure and functioning through species turnover (ST) and intraspecific trait variation (ITV), especially in nutrient limited ecosystems. To quantify the relative importance of ITV and ST in driving community functional structure and productivity changes under nitrogen (N) and phosphorous (P) addition in semiarid grasslands. In this regard, we conducted a four-year fertilizer addition experiment in a semiarid grassland on the Loess Plateau, China.
View Article and Find Full Text PDFHeat stress can hinder the growth of perennial ryegrass ( L.). Methyl jasmonate (MeJA) applied exogenously can increase heat stress tolerance in plants; however, the regulatory mechanisms involved in heat tolerance mediated by MeJA are poorly understood in perennial ryegrass.
View Article and Find Full Text PDFTomato (Solanum lycopersicum L.) is a popular vegetable crop which is widely cultivated around the world. However, the production of tomatoes is threatened by several phytopathogenic agents, including gray mold (Botrytis cinerea Pers.
View Article and Find Full Text PDF(Link) Schroers is a filamentous fungus that has been widely used for biological control, biological fermentation, biodegradation and bioenergy. In this research, we investigated the impact of this fungus on root growth in tomato and the underlying mechanisms. The results showed that can promote root growth in tomato, and tryptophan enhances its growth-promoting impacts.
View Article and Find Full Text PDFBackground: Chenopodium album L. is a troublesome weed in spring-planted crops, and different levels of ploidy have been documented for this weed species. A population of C.
View Article and Find Full Text PDFPhotosynthesis, as an important biological process of plants, produces organic substances for plant growth and development. Although the molecular mechanisms of photosynthesis had been well investigated, the relationship between chlorophyll synthesis and photosynthesis remains largely unknown. The leaf-color mutant was an ideal material for studying photosynthesis and chlorophyll synthesis, which had been seldom investigated in tomato.
View Article and Find Full Text PDFApplication of herbicides inhibiting acetyl CoA carboxylase (ACCase) has been one of the main strategies for selectively controlling grass weed species such as perennial ryegrass (Lolium perenne L.) in wheat and barley crops in New Zealand. In this study, we have confirmed and characterized resistance to pinoxaden, an ACCase-inhibiting herbicide, in a population of L.
View Article and Find Full Text PDFLeaching of herbicides in cropping soils not only impacts the groundwater sources but also reduces their effect in controlling weeds. Leaching studies were carried out in two cropping soils and two forestry biowaste media, wood pulp and sawdust with two herbicides, atrazine and bromacil in a packed lysimeter with simulated rainfall. The hypothesis was that high organic matter forestry biowaste soil amendments reduce the leaching of herbicides through the soil profile.
View Article and Find Full Text PDFMedik. was initially introduced into New Zealand in the 1940s. Despite its introduction approximately 70 years ago, infestation in New Zealand has been naturalized to one region only, although climate-based simulation models predicted that establishment could almost occur in all New Zealand agricultural lands.
View Article and Find Full Text PDFTo estimate the prevalence of herbicide-resistant weeds, 87 wheat and barley farms were randomly surveyed in the Canterbury region of New Zealand. Over 600 weed seed samples from up to 10 mother plants per taxon depending on abundance, were collected immediately prior to harvest (two fields per farm). Some samples provided by agronomists were tested on an ad-hoc basis.
View Article and Find Full Text PDFUnderstanding the interaction between proteins and polyphenols is of significance to food industries. The aim of this research was to investigate the mode of aggregation for trypsin-EGCG (Epigallocatechin-3-gallate) complexes. For this, the complex was characterized by fluorescence spectroscopy, circular dichroism (CD) spectra, small-angel X-ray scattering (SAXS), and atomic force microscope (AFM) techniques.
View Article and Find Full Text PDFTreatment of organic wastewater is a challenging task. Biological techniques using biocatalysts have shown their benefits in organic wastewater treatment. In this research, a novel biocatalyst was developed by encapsulation of Fe3O4 microspheres and haemoglobin (Hb) with mesoporous silica, named Fe3O4@mSiO2(Hb).
View Article and Find Full Text PDFSoliva sessilis is a troublesome annual weed species in New Zealand turfgrass. This weed has been controlled selectively in New Zealand turfgrass for many years using pyridine herbicides such as clopyralid. However, in some golf courses, the continuous application of pyridine herbicides has resulted in the selection of S.
View Article and Find Full Text PDFThe persistence and degradation of two common herbicides, atrazine and bromacil in two organic media, wood pulp and sawdust were compared with two soils. The hypothesis tested was that herbicide degradation will be faster in high organic matter media compared to soil. Degradation of two herbicides was carried out in four different temperature regimes and in sterilised media.
View Article and Find Full Text PDFThe first step in managing herbicide-resistant weeds is to confirm their resistance status. It is, therefore, crucial to have a rapid, reliable and cost-effective technique to assess samples for herbicide resistance. We designed and evaluated three derived cleaved amplified polymorphic sequence (dCAPS) markers for detecting glyphosate resistance in Lolium perenne.
View Article and Find Full Text PDFSuperoxide dismutases (SODs) are a group of enzymes that have a crucial role in controlling oxidative stress in plants. Here, we synthesized an environmentally friendly SOD mimic, SODm-123, from L-aspartic acid and manganese oxide. SODm-123 showed similar enzymatic activity to Mn-SOD.
View Article and Find Full Text PDFThe evolution of resistance to herbicides in weeds has become a great challenge for global agricultural production. Weeds have evolved resistance to herbicides through many different physiological mechanisms. Some weed species are known to secrete herbicide molecules from roots into the rhizosphere upon being treated.
View Article and Find Full Text PDFOrganic soil amendments can be useful for improving degraded soil, but this increase in organic matter (OM) may influence adsorption of herbicides subsequently applied to the treated soil, even though the particle size of amendments and their nature differ from typical soil OM. In this study, a batch equilibrium method was used to measure adsorption of five herbicides following application to two organic media, wood pulp and sawdust, comparing these with two cropping soils. Herbicide adsorption, quantified by distribution coefficients (k), was much higher in the two organic media than in the cropping soils.
View Article and Find Full Text PDFDetrimental pleiotropic effects of resistance mutation(s) were observed for multiple-resistant phenotypes (resistant to both atrazine and dicamba). The multiple-resistant phenotypes had lower growth rates and less capacity for vegetative growth compared to the phenotypes only resistant to atrazine. The fitness costs that are conferred by herbicide resistance alleles can affect the rate of herbicide resistance evolution within populations.
View Article and Find Full Text PDFEvolutionary physiology merges the disciplines of evolution and physiology, and it is a research approach that has not received much attention for studying the development of herbicide resistance. This paper makes a case for using evolutionary physiology more frequently when studying herbicide resistance, and illustrates this using three areas where more work would be useful: (i) the interaction among major and minor alleles over many generations during the evolution of physiological responses that lead to specific mechanisms of resistance; (ii) the role of epigenetic factors, especially at an early stage of evolution, on the physiological modifications that result in phenotypes that become insensitive to herbicides; and (iii) the interaction between fitness and physiological performance over time, with emphasis on understanding mechanisms that improve the fitness of herbicide-resistant phenotypes during selection.
View Article and Find Full Text PDFBackground: Perennial ryegrass (Lolium perenne) has developed resistance to glyphosate within New Zealand vineyards following many years of herbicide application. The objectives of this work were to confirm resistance within two populations obtained from affected vineyards, and to determine the mechanism of resistance to glyphosate.
Results: Population O was confirmed to have a 25-fold resistance to glyphosate, whereas population J had a sevenfold resistance.