This work focused on the preparation of novel antifouling paint based on CaCrO and CaMnO NPs as a safe protective pigment which were replaced with cuprous oxide. Three paint formulations were prepared for comparison, a blank formula without an antifouling agent (F1), a commercial antifouling formula based on 100% cuprous oxide as an antifouling agent (F2), and AF formula based on 75% CaCrO and CaMnO NPs and 25% CuO. The high performance and durability of the paints based on the prepared pigments were evident from their impact resistance, adhesion, pending, hardness, and chemical resistance, which were compared to the blank formula (F1).
View Article and Find Full Text PDFThe current work reports the synthesis of Cr(iii), Mn(ii), Co(ii), Ni(ii) and Cu(ii) chelates of the Schiff base ligand named hydroxy-phenyl-acetic acid (2-hydroxy-naphthalen-1-ylmethylene)-hydrazide with multi-chelation centre toward metal ions. The spectral tools, H-NMR, FTIR, mass, UV-vis spectra, and the analytical elemental and thermal analysis, in addition to magnetic moment and conductivity measurements all combined have been applied to conclude the structure and geometry of the synthesized metal complexes. The formed metal chelates have been assured to be formed with the molar compositions of 1 L : 1 M for PANH-Cr, PANH-Mn, PANH-Co, PANH-Ni and 2 L : 1 M for PANH-Cu.
View Article and Find Full Text PDFIn this study, phenol formaldehyde-montmorillonite (PF-MMT) was prepared and used for lead ion (Pb) adsorption. Batch adsorption experiments were conducted to determine the optimal conditions. The calculated adsorption equilibrium () revealed that pseudo-second-order (PSO) and Langmuir isotherm models best fit the experimental data, suggesting chemisorption as the main mechanism.
View Article and Find Full Text PDFBackground And Objective: Due to the well-documented anti-proliferative activity of 2-thiohydantoin incorporated with pyrazole, oxadiazole, quinazoline, urea, β-naphthyl carbamate and Schiff bases, they are noteworthy in pharmaceutical chemistry.
Methods: An efficient approach for the synthesis of a novel series of 2-thiohydantoin derivatives incorporated with pyrazole and oxadiazole has proceeded via the reaction of the acyl hydrazide with chalcones and/or triethyl orthoformate. Schiff bases were synthesized by the reaction of the acyl hydrazide with different aromatic aldehydes.
A new series of pyrazole, bipyridine, -amide derivatives and Schiff bases was synthesized using compound 2-(3-cyano-6- (thiophen-2-yl)-4,4'- bipyridin-2-yloxy) acetohydrazide () as a starting material. The compounds structures were confirmed depending on the spectroscopic methods and elemental analysis. Also, the compounds were evaluated as anticancer agents by the compounds screened towards adenocarcinoma breast cancer cell line (MCF-7).
View Article and Find Full Text PDFAnticancer Agents Med Chem
April 2020
Background: Quinolones are a significant group of nitrogen heterocyclic compounds that exist in therapeutic agents, alkaloids, and synthetic small molecules that have important biological activities. A wide range of quinolones have been used as antituberculosis, antibacterial, anti-malarial, antifungal, anticonvulsant, anticancer agents and urease inhibitors.
Methods: Ethyl 3,3-disubstituted-2-cyano propionates containing hybride quinolones derivatives were synthesized by the reaction of 1-amino-7-hydroxy-4-methylquinolin-2(1H)-one and its dibromo derivative with α, β-unsaturated carbonyl in ethanol.
Background: Indolinone and spiro-indoline derivatives have been employed in the preparation of different important therapeutic compounds required for treatment of anticonvulsants, antibacterial, Antitubercular, and anticancer activities. Schiff bases have been found to possess various pharmacological activities such as antitubercular, plant growth inhibiting, insecticsidal, central nerve system depressant, antibacterial, anticancer, anti-inflammatory, and antimicrobial. Mannich bases have a variety of biological activities such as antibacterial and antifungal activities.
View Article and Find Full Text PDFChitosan is a non-toxic polyaminosaccharide that is available in a variety of useful forms, and its chemical and biological properties make it a very attractive biomaterial that could be used in a wide variety of medicinal applications. This work focuses on the preparation of different chitosan derivatives by treatment with ethyl cellulose, cellulose triacetate and different carbohydrates in both neutral and slightly acidic media. It also addresses modification with glycidyltrimethyl ammonium chloride, phthalic anhydride and succinic acid derivatives.
View Article and Find Full Text PDF