Publications by authors named "Hoshang Unwalla"

MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers.

View Article and Find Full Text PDF

Human immunodeficiency virus type-1 (HIV-1) associated comorbidities account for the majority of poor health outcomes in people living with HIV (PLWH) in the era of antiretroviral therapy. Lung-related comorbidities such as chronic obstructive pulmonary disease (COPD) and bacterial pneumonia are primarily responsible for increased morbidity and mortality in PLWH, even when compensated for smoking. Smokers and COPD patients demonstrate cilia shortening, attenuated ciliary beat frequency (CBF), dysfunctional ciliated cells along with goblet cell hyperplasia, and mucus hypersecretion.

View Article and Find Full Text PDF

Plasminogen activator inhibitor-1 (PAI-1) is a vital regulator of the fibrinolytic mechanism and has been intricately involved in various physiological and clinical processes, including cancer, thrombosis, and wound healing. The PAI-1 signaling pathway is multifaceted, encompassing numerous signaling molecules and nodes. Recent studies have revealed a novel contribution of PAI-1 during cellular senescence.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a major challenge in lung transplantation often causing graft dysfunction and chronic airway illnesses in recipients. To prevent potential transplant related complications, strict guidelines were put in place to choose viable donor lungs with minimal risk of IRI. These regulations deem most of the donor organs unfit for transplant which then are donated for research to understand the mechanisms of health and diseases in human.

View Article and Find Full Text PDF

microRNAs have emerged as essential regulators of health and disease, attracting significant attention from researchers across diverse disciplines. Following their identification as noncoding oligonucleotides intricately involved in post-transcriptional regulation of protein expression, extensive efforts were devoted to elucidating and validating their roles in fundamental metabolic pathways and multiple pathologies. Viral infections are significant modifiers of the host microRNAome.

View Article and Find Full Text PDF

Transforming Growth Factor Beta1 (TGF-β1) signaling is upregulated in Chronic Obstructive Pulmonary disease (COPD), smokers, and people living with HIV. Cigarette smoking and HIV are also independent risk factors for COPD. Chronic inflammation is a hallmark of COPD.

View Article and Find Full Text PDF

Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) is known to cause cellular senescence and inflammation among infected individuals. While the traditional antiretroviral therapies (ART) have allowed the once fatal infection to be managed effectively, the quality of life of HIV patients on prolonged ART use is still inferior. Most of these individuals suffer from life-threatening comorbidities like chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and diabetes, to name a few.

View Article and Find Full Text PDF

The continuous evolution of new viruses poses a danger to world health. Rampant outbreaks may advance to pandemic level, often straining financial and medical resources to breaking point. While vaccination remains the gold standard to prevent viral illnesses, these are mostly prophylactic and offer minimal assistance to those who have already developed viral illnesses.

View Article and Find Full Text PDF

Mechanical ventilation (MV) is a life-supporting strategy employed in the Intensive Care Unit (ICU). However, MV-associated mechanical stress exacerbates existing lung inflammation in ICU patients, resulting in limited improvement in mortality and a condition known as Ventilator-Induced Lung Injury (VILI). Sphingosine-1-phosphate (S1P) is a circulating bioactive lipid that maintains endothelial integrity primarily through S1P receptor 1 (S1PR1).

View Article and Find Full Text PDF

Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved.

View Article and Find Full Text PDF

People living with HIV (PLWH) have an elevated risk of chronic obstructive pulmonary disease (COPD) and are at a higher risk of asthma and worse outcomes. Even though the combination of antiretroviral therapy (cART) has significantly improved the life expectancy of HIV-infected patients, it still shows a higher incidence of COPD in patients as young as 40 years old. Circadian rhythms are endogenous 24 h oscillations that regulate physiological processes, including immune responses.

View Article and Find Full Text PDF

Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) targeted to HIV proviral DNA has shown excision of HIV from infected cells. However, CRISPR-based HIV excision is vulnerable to viral escape. Targeting cellular co-factors provides an attractive yet risky alternative to render viral escape irrelevant.

View Article and Find Full Text PDF

Cigarette smoke (CS) is known to cause impaired mitophagy and mitochondrial dysregulation in the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. Mitochondrial complexes and dynamics are affected by acute CS exposure in lung epithelium and mouse lung. We hypothesize that chronic CS exposure (4 months) will induce lung mitochondrial dysregulation and abnormal mitophagy.

View Article and Find Full Text PDF
Article Synopsis
  • Circadian rhythms are controlled by both a central clock in the brain and peripheral clocks in other organs, essential for maintaining bodily functions.
  • Disruption of these circadian rhythms, especially in peripheral clocks, is linked to various diseases, particularly affecting lung conditions like COPD and asthma.
  • Non-coding RNAs are significant in regulating the molecular clock, but their specific influence on the lung's molecular clock and related diseases remains understudied.
View Article and Find Full Text PDF

The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses.

View Article and Find Full Text PDF
Article Synopsis
  • Evolutionarily conserved molecular networks, including miRNAs, play a crucial role in regulating gene expression and function in eukaryotic genomes.
  • Dysregulation of miRNAs can lead to abnormal gene expression, contributing to various human health issues, especially in lung diseases like asthma and lung cancer.
  • This review discusses recent findings on miRNAs' roles in lung development and disease, highlighting their potential as diagnostic tools and therapeutic targets.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers achieved effective gene knockdown in normal human bronchial epithelium (NHBE) cells, which are covered in mucus, using a specific technique.
  • The method involved guanylurea functionalization, which alters the chemical properties of the gene carrier.
  • This study highlights a promising approach for targeting genes in complex environments like the lungs, which could have implications for respiratory therapies.
View Article and Find Full Text PDF

Transforming growth factor β (TGF-β), signaling induced by cigarette smoke (CS), plays an important role in the progression of airway diseases, like chronic bronchitis associated with chronic obstructive pulmonary disease (COPD), and in smokers. Chronic bronchitis is characterized by reduced mucociliary clearance (MCC). Cystic fibrosis transmembrane conductance regulator (CFTR) plays an important role in normal MCC.

View Article and Find Full Text PDF
Article Synopsis
  • Aptamers are highly specific nucleic acid or protein ligands with binding capabilities similar to antibodies, selected through a process called SELEX, and have applications in various fields, including therapy and diagnostics.
  • These molecules can bind to various targets with low dissociation constants (Kd), making them effective for a range of ligands.
  • Recent research focuses on using aptamers in the fight against HIV/AIDS, addressing not only viral control but also the non-HIV-related health issues that affect quality of life for those living with the virus.
View Article and Find Full Text PDF

Background: Elevated H2O2 levels are associated with inflammatory diseases and H2O2 exposure is known to disrupt epithelial barrier function, leading to increased permeability and decreased electrical resistance. In normal human bronchial epithelial (NHBE) cells, fully differentiated at the air liquid interface (ALI), H2O2 activates an autocrine prostaglandin pathway that stimulates transmembrane adenylyl cyclase (tmAC) as well as soluble adenylyl cyclase (sAC), but the role of this autocrine pathway in H2O2-mediated barrier disruption is not entirely clear.

Methods: To further characterize the mechanism of H2O2-induced barrier disruption, NHBE cultures were treated with H2O2 and evaluated for changes in transepithelial resistance and mannitol permeability using agonist and inhibitors to dissect the pathway.

View Article and Find Full Text PDF

Impaired mucociliary clearance (MCC) is a hallmark of acquired chronic airway diseases like chronic bronchitis associated with chronic obstructive pulmonary disease (COPD) and asthma. This manifests as microbial colonization of the lung consequently leading to recurrent respiratory infections. People living with HIV demonstrate increased incidence of these chronic airway diseases.

View Article and Find Full Text PDF

Chronic bronchitis, caused by cigarette smoke exposure, is characterized by mucus hypersecretion and reduced mucociliary clearance (MCC). Effective MCC depends, in part, on adequate airway surface liquid. Cystic fibrosis transmembrane conductance regulator (CFTR) provides the necessary osmotic gradient for serosal to mucosal fluid transport through its ability to both secrete Cl(-) and regulate paracellular permeability, but CFTR activity is attenuated in chronic bronchitis and in smokers.

View Article and Find Full Text PDF

Hammerhead ribozymes have been extensively used as RNA-inactivating agents for therapy as well as forward genomics. A ribozyme can be designed so as to specifically pair with virtually any target RNA, and cleave the phosphodiester backbone at a specified location, thereby functionally inactivating the RNA. Two major factors that determine whether ribozymes will be effective for posttranscriptional gene silencing are colocalization of the ribozyme and the target RNAs, and the choice of an appropriate target site on the mRNA.

View Article and Find Full Text PDF

Although inhaled bronchodilators are commonly used in the treatment of airway disease to dilate airway smooth muscle, little is known regarding the mechanisms that regulate albuterol movement across the epithelium to reach its target, the airway smooth muscle. Because the rate of onset depends on the transepithelial transport of albuterol, to determine the mechanisms that regulate the transepithelial movement of albuterol is essential. Human bronchial epithelial cells, fully redifferentiated in culture at the air-liquid interface, were used to study the cellular uptake and total transepithelial flux of (3)H-albuterol from the apical to the basolateral surfaces.

View Article and Find Full Text PDF