In two-dimensional (2D) nanomaterial electronics, vertical field-effect transistors (VFETs), where charges flow perpendicular to the channel materials, hold promise due to the ease of forming ultrashort channel lengths by utilizing the thinness of 2D materials. However, the poor performance of p-type VFET arises from the lack of a gate-field-penetrating electrode with suitable work functions, which is essential for VFET operation. This motivated us to replace graphene (work function of ∼4.
View Article and Find Full Text PDFFeedback field-effect transistors (FBFETs) have been studied to obtain near-zero subthreshold swings at 300 K with a high on/off current ratio ~10. However, their structural complexity, such as an epitaxy process after an etch process for a Si channel with a thickness of several nanometers, has limited broader research. We demonstrated a FBFET using in-plane WSe p-n homojunction.
View Article and Find Full Text PDFThe interplay between strong Coulomb interactions and kinetic energy leads to intricate many-body competing ground states owing to quantum fluctuations in 2D electron and hole gases. However, the simultaneous observation of quantum critical phenomena in both electron and hole regimes remains elusive. Here, we utilize anisotropic black phosphorus (BP) to show density-driven metal-insulator transition with a critical conductance ∼/ which highlights the significant role of quantum fluctuations in both hole and electron regimes.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides (TMDs) are promising materials for semiconductor nanodevices owing to their flexibility, transparency, and appropriate band gaps. A variety of optoelectronic and electronic devices based on TMDs diodes have been extensively investigated due to their unique advantages. However, improving their performance is challenging for commercial applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2023
The existence of a novel phenomenon, such as the metal-insulator transition (MIT) in two-dimensional (2D) systems, affords emerging functional properties that provide new aspects for future electronics and optoelectronics. Here, we report the observation of the MIT in black phosphorus field effect transistors by tuning the carrier density () controlled by back-gate bias. We find that the conductivity follows an dependence as σ() ∝ with α ∼ 1, which indicates the presence of screened Coulomb impurity scattering at high carrier densities in the temperature range of 10-300 K.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2022
Palladium diselenide (PdSe), as an emerging two-dimensional (2D) layered material, is gaining growing attention in nanoelectronics and optoelectronics due to its thickness-dependent band gap, high carrier mobility, and good air stability. However, its asymmetric pentagon structure is inclined to breed defects. Herein, the intrinsic Se vacancy-induced trap states and their influence on the hopping transport in PdSe are systematically investigated.
View Article and Find Full Text PDFWe report an interphalangeal traction system through capsuloligamentotaxis for the treatment of comminuted fracture of the middle phalanx. The interphalangeal (IP) traction system inserts a K-wire at the proximal and distal phalanx. The difference between our IP traction system compared with the modified Suzuki frame method is that distal IP and proximal IP joints are synchronously distracted in the fixator, and bony continuity and articular integrity are restored.
View Article and Find Full Text PDF