Paper-based sensors can be exploited to develop low-cost, disposable, and rapid assays for the detection of a large variety of analytes. We report a paper-based sensor system for a point-of-care (POC) nucleic acid amplification test that can quantitatively detect multiple genes from different pathogens. The POC system combines a paper sensor chip and a portable instrument, which is built on an Internet of Things (IoT) platform.
View Article and Find Full Text PDFThis paper reports an imprint and transfer approach for the rapid and inexpensive fabrication of the ultra-thin freestanding plasmonic membrane (FPM) that supports surface plasmon resonances. The imprint and transfer fabrication method involves the soft imprint lithography on an ultrathin polymer film, transfer of the perforated polymer film to a supporting frame, subsequent deposition of gold, and final removal of the polymer film. Without using any sophisticated lithography and etching processes, the imprint and transfer method can produce freestanding gold membranes with 2D arrays of submicrometer-sized holes that support plasmonic modes in the mid-wavelength infrared (mid-IR) range.
View Article and Find Full Text PDFNucleic acid tests have been widely used for diagnosis of diseases by detecting the relevant genetic markers that are usually amplified using polymerase chain reaction (PCR). This work reports the use of a plasmonic device as an efficient and low-cost PCR thermocycler to facilitate nucleic acid-based diagnosis. The thermoplasmonic device, consisting of a one-dimensional metal grating, exploited the strong light absorption of plasmonic resonance modes to heat up PCR reagents using a near-infrared laser source.
View Article and Find Full Text PDFPhotonic crystals (PhCs) and plasmonic nanostructures offer the unprecedented capability to control the interaction of light and biomolecules at the nanoscale. Based on PhC and plasmonic phenomena, a variety of analytical techniques have been demonstrated and successfully implemented in many fields, such as biological sciences, clinical diagnosis, drug discovery, and environmental monitoring. During the past decades, PhC and plasmonic technologies have progressed in parallel with their pros and cons.
View Article and Find Full Text PDF