Outbreaks are complex multi-scale processes that are impacted not only by cellular dynamics and the ability of pathogens to effectively reproduce and spread, but also by population-level dynamics and the effectiveness of mitigation measures. A timely exchange of information related to the spread of novel pathogens, stay-at-home orders, and other measures can be effective at containing an infectious disease, particularly during the early stages when testing infrastructure, vaccines, and other medical interventions may not be available at scale. Using a multiplex epidemic model that consists of an information layer (modeling information exchange between individuals) and a spatially embedded epidemic layer (representing a human contact network), we study how random and targeted disruptions in the information layer (e.
View Article and Find Full Text PDFIn this study, we investigated cancer cellular networks in the context of gene interactions and their associated patterns in order to recognize the structural features underlying this disease. We aim to propose that the quest of understanding cancer takes us beyond pairwise interactions between genes to a higher-order construction. We characterize the most prominent network deviations in the gene interaction patterns between cancer and normal samples that contribute to the complexity of this disease.
View Article and Find Full Text PDF