The viral safety of biological products is ensured by tests throughout the production chain, and, for certain products, by steps in the manufacturing process enabling the elimination or inactivation of viruses. Current testing programs include sample inoculation in animals and embryonic eggs. Following the 3Rs principles of replacement, reduction, and refinement of animal-use methods, such techniques are intended to be replaced not only for ethical reasons but also because of their inherent technical limitations, their long turnaround times, and their limits in virus detection.
View Article and Find Full Text PDFThe Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) collected historical data from 20 biopharmaceutical industry members on their experience with the in vivo adventitious virus test, the in vitro virus test, and the use of next generation sequencing (NGS) for viral safety. Over the past 20 years, only three positive in vivo adventitious virus test results were reported, and all were also detected in another concurrent assay. In more than three cases, data collected as a part of this study also found that the in vivo adventitious virus test had given a negative result for a sample that was later found to contain virus.
View Article and Find Full Text PDFThis review summarizes the viral safety concepts applied for cell line derived recombinants including biosimilars. The major aspects - material sourcing, testing, and viral clearance - are outlined and essentials per aspect to be considered described in more detail. The principles of viral clearance are explained in more detail like the background of viral removal or inactivation, model virus selection and definition of virus reduction capacity.
View Article and Find Full Text PDFVirus filtration has been demonstrated to be an effective and robust dedicated viral clearance step that is used in biopharmaceutical manufacturing processes. Here we present virus filtration data from a multicompany collaboration with data compiled from WuXi Advanced Therapies' and Charles River Laboratories' internal viral clearance databases spanning more than 25 years. The data were sorted by virus removal and type and then further subdivided into murine leukemia virus only, pseudorabies virus only, and reovirus type 3 only categories to allow for analyses of viral clearance results.
View Article and Find Full Text PDFThe utilization of the current combination of in vitro, in vivo and PCR assays for the identification of adventitious viruses in production cells has a limited range of detection. While Next Generation Sequencing (NGS) has a broader breadth of detection, it is unable to differentiate sequences from replicating viruses versus background inert sequences. In order to improve NGS specificity, we have designed a new NGS approach which targets subsets of viral RNAs only synthesized during cell infection.
View Article and Find Full Text PDFPore-size distribution (PSD) is the most critical parameter for size-exclusion virus removal filters. Yet, different dry- and wet-state porometry methods yield different pore-size values. The goal of this work is to conduct comparative analysis of nitrogen gas sorption (NGSP), liquid-liquid and cryoporometry with differential scanning calorimetry (CP-DSC) methods with respect to characterization of regular and cross-linked virus removal filter paper based on cellulose nanofibers, i.
View Article and Find Full Text PDFContinuous processing for the production of monoclonal antibodies (mAb) gains more and more importance. Several solutions exist for all the necessary production steps, leading to the possibility to build fully continuous processes. Low pH viral inactivation is a part of the standard platform process for mAb production.
View Article and Find Full Text PDFUnlabelled: This article describes a four virus panel validation of EMD Millipore's (Bedford, MA) small virus-retentive filter, Viresolve® Pro, using TrueSpike(TM) viruses for a Biogen Idec process intermediate. The study was performed at Charles River Labs in King of Prussia, PA. Greater than 900 L/m(2) filter throughput was achieved with the approximately 8 g/L monoclonal antibody feed.
View Article and Find Full Text PDF