Unlabelled: The molecular pathogenesis of autism spectrum disorder, a neurodevelopmental disorder, is still elusive. In this study, we investigated the possible roles of endoplasmic reticulum (ER) stress, oxidative stress, and apoptosis as molecular mechanisms underlying autism. This study compared the activation of ER stress signals (protein kinase R-like endoplasmic reticulum kinase [PERK], activating transcription factor 6 [ATF6], inositol-requiring enzyme 1 alpha [IRE1α]) in different brain regions (prefrontal cortex, hippocampus, cerebellum) in subjects with autism and in age-matched controls.
View Article and Find Full Text PDFBrain tissue from 1068 donors was analyzed for RNA quality as a function of postmortem interval (PMI) and years in storage. Approximately 83% of the cortical and cerebellar samples had an RNA integrity number (RIN) of 6 or greater, indicating their likely suitability for real-time quantitative polymerase chain reaction research. The average RIN value was independent of the PMI, up to at least 36 hours.
View Article and Find Full Text PDFNeural tube defects result from failure to completely close neural tubes during development. Maternal diabetes is a substantial risk factor for neural tube defects, and available evidence suggests that the mechanism that links hyperglycemia to neural tube defects involves oxidative stress and apoptosis. We demonstrated that maternal hyperglycemia correlated with activation of the apoptosis signal-regulating kinase 1 (ASK1) in the developing neural tube, and Ask1 gene deletion was associated with reduced neuroepithelial cell apoptosis and development of neural tube defects.
View Article and Find Full Text PDF