The skeletal system of Demospongiae consists of siliceous spicules, which are composed of an axial channel containing an organic axial filament (AF) surrounded by a compact layer of hydrated amorphous silica. Here we report the ultrastructural investigations of the AF of siliceous spicules from two Demospongiae: Suberites domuncula and Tethya aurantium. Electron microscopy, electron diffraction and elemental mapping analyses on both longitudinal and transversal cross-sections yield that spicules's AF consist of a three-dimensional crystal lattice of six-fold symmetry.
View Article and Find Full Text PDFThe search for highly efficient and low-cost catalysts is one of the main driving forces in catalytic chemistry. Current strategies for the catalyst design focus on increasing the number and activity of local catalytic sites, such as the edge sites of molybdenum disulfides in the hydrogen evolution reaction (HER). Here, the study proposes and demonstrates a different principle that goes beyond local site optimization by utilizing topological electronic states to spur catalytic activity.
View Article and Find Full Text PDFWe identify the presence of multiple vascular channels within the spider fang. These channels seem to serve the transport of zinc to the tip of the fang to cross-link the protein matrix by binding to histidine residues. According to amino acid and elemental analysis of fangs extracted shortly after ecdysis, His-rich proteins are deposited before Zn is incorporated into the cuticle.
View Article and Find Full Text PDFWe report on a structural analysis of several basal spicules of the deep-sea silica sponge Monorhaphis chuni by electron microscope techniques supported by a precise focused ion beam (FIB) target preparation. To get a deeper understanding of the spicules length growth, we concentrated our investigation onto the apical segments of two selected spicules with apparently different growth states and studied in detail permanent and temporary growth structures in the central compact silica axial cylinder (AC) as well as the structure of the organic axial filament (AF) in its center. The new findings concern the following morphology features: (i) at the tip we could identify thin silica layers, which overgrow as a tongue-like feature the front face of the AC and completely fuse during the subsequent growth state.
View Article and Find Full Text PDFThe discovery of perfectly ordered 3D mesoporous protein/silica structure in the axial filament of the marine sponge Monorhaphis chuni is reported. The structure belongs to body-centered tetragonal symmetry system (a=9.88 nm, c=10.
View Article and Find Full Text PDFThis article deals with uncertainty in the analysis of strain in silicon nanoscale structures and devices using nanobeam electron diffraction (NBED). Specimen and instrument related errors and instabilities and their effects on NBED analysis are addressed using a nanopatterned ultrathin strained silicon layer directly on oxide as a model system. We demonstrate that zero-loss filtering significantly improves the NBED precision by decreasing the diffuse background in the diffraction patterns.
View Article and Find Full Text PDF