Publications by authors named "Horseman N"

Homeostasis during lactation is a special case in which the unit for regulation is a dyad comprising the mother and her currently nursing offspring (the mother-offspring dyad). This arrangement is not a trivial. A litter of mice can have a mass greater than the mother and nutrient demands that far exceed her.

View Article and Find Full Text PDF

Weight gain at the outset of prolactinomas in many women is well documented. Yet, this symptom is absent from the clinical descriptions of the disease in textbooks and reviews. This omission is almost certainly due to the absence of a physiological explanation for the phenomenon, as prolactin is not a recognized fat promoting hormone.

View Article and Find Full Text PDF

Serotonin is a homeostatic regulator of the mammary gland during lactation. The contribution of mammary-derived serotonin to circulating serum serotonin concentrations was previously unknown. We have developed mice with mammary-specific disruptions of tryptophan hydroxylase 1 (Tph1) or low-density lipoprotein receptor-related protein 5 (Lrp5) that are induced during late pregnancy and lactation via use of the whey acidic protein (WAP)-Cre cre-lox system.

View Article and Find Full Text PDF

The physiology of mood regulation in the postpartum is poorly understood despite the fact that postpartum depression (PPD) is a common pathology. Serotonergic mechanisms and their dysfunction are widely presumed to be involved, which has led us to investigate whether lactation induces changes in central or peripheral serotonin (5-HT) systems and related affective behaviors. Brain sections from lactating (day 10 postpartum) and age-matched nulliparous (non-pregnant) C57BL/6J mice were processed for 5-HT immunohistochemistry.

View Article and Find Full Text PDF

Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland.

View Article and Find Full Text PDF

Serotonin (5-hydroxytryptamine, 5-HT) is a very simple molecule that plays key roles in complex communication mechanisms within the animal body. In the mammary glands, serotonin biosynthesis and secretion are induced in response to dilation of the alveolar spaces. Since its discovery several years ago, mammary 5-HT has been demonstrated to perform two homeostatic functions.

View Article and Find Full Text PDF

Women are more resistant to hepatocellular carcinoma (HCC) than men despite equal exposure to major risk factors, such as hepatitis B or C virus infection. Female resistance is hormone-dependent, as evidenced by the sharp increase in HCC incidence in postmenopausal women who do not take hormone replacement therapy. In rodent models sex-dimorphic HCC phenotypes are pituitary-dependent, suggesting that sex hormones act via the gonadal-hypophyseal axis.

View Article and Find Full Text PDF

Serotonin (5-HT), classically known as a neurotransmitter involved in regulating sleep, appetite, memory, sexual behavior, neuroendocrine function and mood is also synthesized in epithelial cells located in many organs throughout the body, including the mammary gland. The function of epithelial 5-HT is dependent on the expression of the 5-HT receptors in a particular system. The conventional components of a classic 5-HT system are found within the mammary gland; synthetic enzymes (tryptophan hydroxylase I, aromatic amino acid decarboxylase), several 5-HT receptors and the 5-HT reuptake transporter (SERT).

View Article and Find Full Text PDF

Molecular genetics and other contemporary approaches have contributed to a better understanding of prolactin (PRL) actions at the cellular and organismal levels. In this review, several advances in knowledge of PRL actions are highlighted. Special emphasis is paid to areas of progress with consequences for understanding of human PRL actions.

View Article and Find Full Text PDF

Lactation is the most extreme case of normal physiological bone loss during a lifetime, and breast cancers have a strong tendency to metastasize to bone. In both the physiological and pathological circumstances, parathyroid hormone-related peptide (PTHrP) plays a central role. Until recently there were no regulatory mechanisms to explain the induction of endocrine PTHrP secretion from breast cells during lactation.

View Article and Find Full Text PDF

A variety of fundamental differences have evolved in the physiology of the human and rodent prolactin (PRL) systems. The PRL gene in humans and other primates contains an alternative promoter, 5.8 kbp upstream of the pituitary transcription start site, which drives expression of PRL in "extrapituitary" tissues, where PRL is believed to exert local, or paracrine, actions.

View Article and Find Full Text PDF

Aware of the important benefits of human milk, most U.S. women initiate breastfeeding but difficulties with milk supply lead some to quit earlier than intended.

View Article and Find Full Text PDF

Extrapituitary prolactin (Prl) is produced in humans and rodents; however, little is known about its in vivo regulation or physiological function. We now report that autocrine prolactin is required for terminal mammary epithelial differentiation during pregnancy and that its production is regulated by the Pten-PI3K-Akt pathway. Conditional activation of the PI3K-Akt pathway in the mammary glands of virgin mice by either Akt1 expression or Pten deletion rapidly induced terminal mammary epithelial differentiation accompanied by the synthesis of milk despite the absence of lobuloalveolar development.

View Article and Find Full Text PDF

This paper resulted from a conference entitled "Lactation and Milk: Defining and refining the critical questions" held at the University of Colorado School of Medicine from January 18-20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into human milk composition, mammary development and lactation. We first outline the unanswered questions regarding the composition of human milk (Section I) and the mechanisms by which milk components affect neonatal development, growth and health and recommend models for future research.

View Article and Find Full Text PDF

Serotonin (5-HT), a neurotransmitter produced in mammary epithelial cells (MECs), acts via autocrine-paracrine mechanisms on MECs to regulate milk secretion in a variety of species. Recent studies in dairy cows reported that 5-HT ligands affect milk yield and composition. We determined the mRNA expression of bovine 5-HT receptor (5-HTR) subtypes in bovine mammary tissue (BMT) and cultured bovine MECs.

View Article and Find Full Text PDF

Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD) has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat) diet versus a low-fat diet (LFD; 10% kcal from fat) to female Wistar rats on lactation outcomes.

View Article and Find Full Text PDF

Breast cells drive bone demineralization during lactation and metastatic cancers. A shared mechanism among these physiological and pathological states is endocrine secretion of parathyroid hormone-related protein (PTHrP), which acts through osteoblasts to stimulate osteoclastic bone demineralization. The regulation of PTHrP has not been accounted for fully by any conventional mammotropic stimuli or tumor growth factors.

View Article and Find Full Text PDF

Epithelial homeostasis incorporates the paradoxical concept of internal change (epithelial turnover) enabling the maintenance of anatomical status quo. Epithelial cell differentiation and cell loss (cell shedding and apoptosis) form important components of epithelial turnover. Although the mechanisms of cell loss are being uncovered the crucial triggers that modulate epithelial turnover through regulation of cell loss remain undetermined.

View Article and Find Full Text PDF

Serotonin (5-HT) is a homeostatic regulator of lactation. Selective 5-HT reuptake inhibitors (SSRI) are commonly prescribed pharmaceuticals that inhibit activity of the 5-HT reuptake transporter, increasing cellular exposure to 5-HT. Use of SSRIs has been shown to alter lactation performance in humans and 5-HT has been shown to reduce milk yield in cattle.

View Article and Find Full Text PDF

Psychological stress has a high incidence after burn injury, therefore, anxiolytic drugs are often prescribed. Unfortunately, to date, no burn study has investigated the effects of anxiolytic drugs on the ability to fight infection. This study was undertaken to determine if psychological stress, anxiety-modulating drugs, or both, alter survival following an infection.

View Article and Find Full Text PDF

Context: Serotonin [5-hydroxytryptamine (5-HT)] is an important local regulator of lactation homeostasis; however, the roles for the serotonin reuptake transporter and monoamine oxidase have not been known.

Objective: The aim of the study was to determine whether drugs that impact 5-HT affect human lactation physiology.

Design And Setting: We conducted laboratory studies of human and animal models and an observational study of the onset of copious milk secretion in postpartum women at a university medical center.

View Article and Find Full Text PDF

Introduction: The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs.

View Article and Find Full Text PDF

Recent studies in dairy cows have demonstrated that serotonergic ligands affect milk yield and composition. Correspondingly, serotonin (5-HT) has been demonstrated to be an important local regulator of lactational homeostasis and involution in mouse and human mammary cells. We determined the mRNA expression of bovine 5-HT receptor (HTR) subtypes in bovine mammary tissue (BMT) and used pharmacological agents to evaluate functional activities of 5-HT receptors.

View Article and Find Full Text PDF

As demonstrated by a variety of animal studies, barrier function in the mammary epithelium is essential for a fully functioning and differentiated gland. However, there is a paucity of information on barrier function in human mammary epithelium. Here, we have established characteristics of a polarizing differentiating model of human mammary epithelial cells capable of forming a high-resistance/low-conductance barrier in a predictable manner, viz.

View Article and Find Full Text PDF

Mammary gland homeostasis and the lactation-to-involution switch are regulated by serotonin (5-hydroxytryptamine (5-HT)). Mammary epithelial tight junctions are physiological targets of 5-HT, and their disruption marks an early stage of mammary gland involution. In these studies, we have identified signal transduction mechanism employed by 5-HT during regulation of mammary gland transepithelial resistance.

View Article and Find Full Text PDF