Publications by authors named "Hornhardt S"

Background: Sensitivity to ionizing radiation differs between individuals, but there is a limited understanding of the biological mechanisms that account for these variations. One example of such mechanisms are the mutations in the ATM (mutated ataxia telangiectasia) gene, that cause the rare recessively inherited disease Ataxia telangiectasia (AT). Hallmark features include chromosomal instability and increased sensitivity to ionizing radiation (IR).

View Article and Find Full Text PDF

Objective: Head and neck cancer (HNC) accounts for almost 890,000 new cases per year. Radiotherapy (RT) is used to treat the majority of these patients. A common side-effect of RT is the onset of oral mucositis, which decreases the quality of life and represents the major dose-limiting factor in RT.

View Article and Find Full Text PDF

Purpose: To establish stable growth of keratinocytes from very small biopsy specimens and successfully apply new test systems to determine their radiosensitivity.

Materials And Methods: Oral mucosa biopsies (diameter: 1.7 mm) from 15 subjects were immobilized with custom-made cups onto culture plates.

View Article and Find Full Text PDF

Childhood leukemia (CL) is undoubtedly caused by a multifactorial process with genetic as well as environmental factors playing a role. But in spite of several efforts in a variety of scientific fields, the causes of the disease and the interplay of possible risk factors are still poorly understood. To push forward the research on the causes of CL, the German Federal Office for Radiation Protection has been organizing recurring international workshops since 2008 every two to three years.

View Article and Find Full Text PDF
Article Synopsis
  • - Ataxia-telangiectasia (AT) is a rare genetic disorder caused by a mutation in the ATM gene, leading to issues like chromosomal instability, cancer risk, and heightened sensitivity to radiation.
  • - The study examined DNA damage and repair in lymphocytes from 8 AT patients and 10 healthy individuals after radiation exposure, finding varied responses among patients regarding γH2A.X foci and DNA repair capacity.
  • - Results indicated that while γH2A.X foci may not reliably indicate radiation sensitivity due to individual mutation differences, complex chromosomal aberrations and dicentric chromosomes could serve as effective biomarkers for assessing radiation sensitivity in AT patients.
View Article and Find Full Text PDF

Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer.

View Article and Find Full Text PDF

Normal tissue toxicity is a dose-limiting factor in radiation therapy. Therefore, a detailed understanding of the normal tissue response to radiation is necessary to predict the risk of normal tissue toxicity and to development strategies for tissue protection. One component of normal tissue that is continuously exposed during therapeutic irradiation is the circulating population of peripheral blood mononuclear cells (PBMC).

View Article and Find Full Text PDF

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.

View Article and Find Full Text PDF

Despite substantial experimental and epidemiological research, there is limited knowledge of the uranium-induce health effects after chronic low-dose exposures in humans. Biological markers can objectively characterize pathological processes or environmental responses to uranium and confounding agents. The integration of such biological markers into a molecular epidemiological study would be a useful approach to improve and refine estimations of uranium-induced health risks.

View Article and Find Full Text PDF

Gene expression time-course experiments allow to study the dynamics of transcriptomic changes in cells exposed to different stimuli. However, most approaches for the reconstruction of gene association networks (GANs) do not propose prior-selection approaches tailored to time-course transcriptome data. Here, we present a workflow for the identification of GANs from time-course data using prior selection of genes differentially expressed over time identified by natural cubic spline regression modeling (NCSRM).

View Article and Find Full Text PDF

Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times.

View Article and Find Full Text PDF

The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear.

View Article and Find Full Text PDF

It has been suggested that a mechanistic understanding of the cellular responses to low dose and dose rate may be valuable in reducing some of the uncertainties involved in current risk estimates for cancer- and non-cancer-related radiation effects that are inherited in the linear no-threshold hypothesis. In this study, the effects of low-dose radiation on the proteome in both human fibroblasts and stem cells were investigated. Particular emphasis was placed on examining: 1.

View Article and Find Full Text PDF
Article Synopsis
  • TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is a serious disease that is currently very hard to cure.
  • Researchers found unique changes in the genes and drug reactions of TCF3-HLF-positive ALL compared to another type, TCF3-PBX1-positive ALL.
  • They discovered that certain genetic changes in TCF3 and PAX5 help explain why TCF3-HLF ALL is tougher to treat but also found possible new treatments that could be effective.
View Article and Find Full Text PDF

Cataracts are the major eye disorder and have been associated mainly with mutations in lens-specific genes, but cataracts are also frequently associated with complex syndromes. In a large-scale high-throughput ENU mutagenesis screen we analyzed the offspring of paternally treated C3HeB/FeJ mice for obvious dysmorphologies. We identified a mutant suffering from rough coat and small eyes only in homozygotes; homozygous females turned out to be sterile.

View Article and Find Full Text PDF

Context: Radio-sensitivity in normal tissue is characterized by heterogeneity throughout the population and the absence of pre-diagnostic biomarkers.

Objective: We conducted a proteomic approach to search for radiation characteristic protein regulation.

Materials And Methods: Cell lines were 10 Gy irradiated and analysed by 2D-DIGE after 24 h.

View Article and Find Full Text PDF

Recent findings related to childhood leukaemia incidence near nuclear installations have raised questions which can be answered neither by current knowledge on radiation risk nor by other established risk factors. In 2012, a workshop was organised on this topic with two objectives: (a) review of results and discussion of methodological limitations of studies near nuclear installations; (b) identification of directions for future research into the causes and pathogenesis of childhood leukaemia. The workshop gathered 42 participants from different disciplines, extending widely outside of the radiation protection field.

View Article and Find Full Text PDF

Cancer risk and radiation sensitivity are often associated with alterations in DNA repair, cell cycle, or apoptotic pathways. Interindividual variability in mutagen or radiation sensitivity and in cancer susceptibility may also be traced back to polymorphisms of genes affecting e.g.

View Article and Find Full Text PDF

Background: Radiation-induced alterations in posttranslational histone modifications (PTMs) may affect the cellular response to radiation damage in the DNA. If not reverted appropriately, altered PTM patterns may cause long-term alterations in gene expression regulation and thus lead to cancer. It is therefore important to characterize radiation-induced alterations in PTM patterns and the factors affecting them.

View Article and Find Full Text PDF

In this pilot study we compared for the first time the radiation sensitivity of mouse lens epithelial cells (LECs) and mouse lymphocytes. We freshly prepared LECs and lymphocytes and irradiated them with γ-rays ((137)Cs; doses ranging from 0.25 to 2 Gy).

View Article and Find Full Text PDF

Western blots are used to specifically measure the relative quantities of proteins of interest in complex biological samples. Quantitative measurements can be subject to error due to process inconsistencies such as uneven protein transfer to the membrane. These non-sample-related variations need to be compensated for by an approach known as normalization.

View Article and Find Full Text PDF

Radiation sensitivity is assumed to be a cancer susceptibility factor due to impaired DNA damage signalling and repair. Relevant genetic factors may also determine the observed familial aggregation of early onset lung cancer. We investigated the heritability of radiation sensitivity in families of 177 Caucasian cases of early onset lung cancer.

View Article and Find Full Text PDF

The International Agency for Research on Cancer (IARC) has classified high as well as low-frequency fields as "possibly carcinogenic to humans" (Group 2B). For high frequency fields the recent assessment is based mainly on weak positive associations described in some epidemiological studies between glioma and acoustic neuroma and the use of mobile and other wireless phones. Also for lowfrequency fields the evidence is based on epidemiological findings revealing a statistic association between childhood leukemia (CL) and low-level magnetic fields.

View Article and Find Full Text PDF

The COMET assay is recognized as a rapid and sensitive method in quantifying radiation induced DNA damage. We investigated the distorting influence of endogenous, assay-inherent factors onto base (single cell level) and primary outcome measures (experimental/slide level), such as olive tail moment (OTM) and percentage DNA in the tail (%tail-DNA). From 2003 to 2008, we performed the assay on lymphocytes isolated from the blood samples of 355 lung cancer patients, 170 controls, and 610 relatives, as well as one single reference individual, repeated 170 times.

View Article and Find Full Text PDF

An easy, fast and reliable method was developed to screen hundreds of Epstein-Barr virus-transformed cell lines (lymphoblastoid cell lines, LCLs) for radiation sensitivity that were generated from lymphocytes isolated from young lung cancer patients. The WST-1 test explores the metabolic activity of the mitochondria as an indicator for the vital status of cells. Cell proliferation as well as indirect cell death can be quantified by this method on a large scale in microtiter plates.

View Article and Find Full Text PDF