Publications by authors named "Horne W"

The threat posed by bacteria resistant to common antibiotics creates an urgent need for novel antimicrobials. Non-ribosomal peptide natural products that bind Lipid II, such as vancomycin, represent a promising source for such agents. The fungal defensin plectasin is one of a family of ribosomally produced miniproteins that also exert antimicrobial activity via Lipid II binding.

View Article and Find Full Text PDF

Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by de novo designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool.

View Article and Find Full Text PDF

Targeted protein backbone modification can recreate tertiary structures reminiscent of folds found in nature on artificial scaffolds with improved biostability. Incorporation of altered monomers in such entities is typically limited to sites distant from the hydrophobic core to avoid potential disruptions to folding. This is limiting, as it is advantageous in some applications to incorporate artificial connectivity at buried sites.

View Article and Find Full Text PDF

Affective polarization measures account for partisans' feelings towards their own party versus its opponent(s), but not for how likely partisans are to encounter co-partisans versus out-partisans. However, the intensity of out-party dislike and the probability with which this comes into play both determine the social impact of cross-party hostility. We develop an affective fractionalization measure that accounts for both factors, and apply it to longitudinal survey data from 20 Western publics.

View Article and Find Full Text PDF

Sequence-encoded protein folding is a ubiquitous biological process that has been successfully engineered in a range of oligomeric molecules with artificial backbone chemical connectivity. A remarkable aspect of protein folding is the contrast between the rapid rates at which most sequences in nature fold and the vast number of conformational states possible in an unfolded chain with hundreds of rotatable bonds. Research efforts spanning several decades have sought to elucidate the fundamental chemical principles that dictate the speed and mechanism of natural protein folding.

View Article and Find Full Text PDF

Chemical modifications of long-lived proteins, such as isomerization and epimerization, have been evoked as prime triggers for protein-damage related diseases. Deamidation of Asn residues, which results in formation of a mixture of l- and d-Asp and isoAsp via an intermediate aspartyl succinimide, can result in the disruption of cellular proteostasis and toxic protein depositions. In contrast to extensive data on the biological prevalence and functional implications of aspartyl succinimide formation, much less is known about the impact of the resulting altered backbone composition on properties of individual proteins at a molecular level.

View Article and Find Full Text PDF

Strategic incorporation of achiral C-dialkylated amino acids with bulky substituents into peptides can be used to promote extended strand conformations and inhibit protein-protein interactions associated with amyloid formation. In this work, we evaluate the thermodynamic impact of chiral C monomers on folding preferences in such systems through introduction of a series of C-methylated and C-ethylated residues into a β-hairpin host sequence. Depending on stereochemical configuration of the artificial monomer and potential for additional hydrophobic packing, a C-ethyl-C-propyl glycine residue can provide similar or enhanced folded stability relative to an achiral C-diethyl analogue.

View Article and Find Full Text PDF

The construction of protein-sized synthetic chains that blend natural amino acids with artificial monomers to create so-called heterogeneous-backbones is a powerful approach to generate complex folds and functions from bio-inspired agents. A variety of techniques from structural biology commonly used to study natural proteins have been adapted to investigate folding in these entities. In NMR characterization of proteins, proton chemical shift is a straightforward to acquire, information-rich metric that bears directly on a variety of properties related to folding.

View Article and Find Full Text PDF

The importance of β-turns to protein folding has motivated extensive efforts to stabilize the motif with non-canonical backbone connectivity. Prior work has focused almost exclusively on turns between strands in a β-sheet (i. e.

View Article and Find Full Text PDF

Sequence-encoded folding is the foundation of protein structure and is also possible in synthetic chains of artificial chemical composition. In natural proteins, the characteristics of the unfolded state are as important as those of the folded state in determining folding energetics. While much is known about folded structures adopted by artificial protein-like chains, corresponding information about the unfolded states of these molecules is lacking.

View Article and Find Full Text PDF

Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability.

View Article and Find Full Text PDF

The emergence of resistance to clinically used antibiotics by bacteria presents a significant problem in public health. Natural antimicrobial peptides (AMPs) are a valuable source of antibiotics that act by a mechanism less prone to the evolutionary development of resistance. In an effort to realize the promise of AMPs while overcoming limitations such as poor biostability, researchers have sought sequence-defined oligomers with artificial amide-based backbones that show membrane-disrupting functions similar to natural agents.

View Article and Find Full Text PDF

Introduction: The sheep was evaluated as a potential model for preclinical evaluation of urethral slings in vivo based on: (1) anatomical measurements of the sheep vagina and (2) histological tissue integration and host response to polypropylene (PP) slings.

Methods: Eight female, multiparous sheep were utilized. Three of 8 animals underwent surgery mimicking human tension-free vaginal tape protocols for midurethral slings and were euthanized at 6 months.

View Article and Find Full Text PDF

Denham Harman's oxidative damage theory identifies superoxide (O) radicals as central agents of aging and radiation injury, with Mn-dependent superoxide dismutase (MnSOD) as the principal O-scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn-antioxidant complexes well-known for their catalytic ability to scavenge O, along with MnSOD, as exemplified by D.

View Article and Find Full Text PDF

Recent years have seen a growing number of examples of designed oligomeric molecules with artificial backbone connectivity that are capable of adopting complex folded tertiary structures analogous to those seen in natural proteins. A range of experimental techniques from structural biology and biophysics have been brought to bear in the study of these proteomimetic agents. Here, we discuss some considerations encountered in the characterization of high-resolution folded structure as well as folding thermodynamics of protein-like artificial backbones.

View Article and Find Full Text PDF

Deletion of c-Src, a ubiquitously expressed tyrosine kinase, results in osteoclast dysfunction and osteopetrosis, in which bones harden into "stone." In contrast, deletion of the genes encoding other members of the Src family kinase (SFK) fails to produce an osteopetrotic phenotype. This suggests that c-Src performs a unique function in the osteoclast that cannot be compensated for by other SFKs.

View Article and Find Full Text PDF

Clinical definitions of asthma fail to capture the heterogeneity of immune dysfunction in severe, treatment-refractory disease. Applying mass cytometry and machine learning to bronchoalveolar lavage (BAL) cells, we find that corticosteroid-resistant asthma patients cluster largely into two groups: one enriched in interleukin (IL)-4 innate immune cells and another dominated by interferon (IFN)-γ T cells, including tissue-resident memory cells. In contrast, BAL cells of a healthier population are enriched in IL-10 macrophages.

View Article and Find Full Text PDF

The mimicry of protein tertiary folds by chains artificial in backbone chemical composition leads to proteomimetic analogues with potential utility as bioactive agents and as tools to shed light on biomacromolecule behavior. Notable successes toward such molecules have been achieved; however, as protein structural diversity is vast, design principles must be continually honed as they are applied to new prototype folding patterns. One specific structure where a gap remains in understanding how to effectively generate modified backbone analogues is the metal-binding β-turn found in zinc finger domains.

View Article and Find Full Text PDF

Sequence-defined oligomeric molecules with discrete folding propensities, termed foldamers, are a versatile source of agents with tailored structure and function. An inspiration for the development of the foldamer paradigm are natural biomacromolecules, the sequence-encoded folding of which is the basis of life. Metal ions and clusters are common features in proteins, where the role of metal varies from supporting structure to enabling function.

View Article and Find Full Text PDF

Background: Endocrine therapy resistance is a hallmark of advanced estrogen receptor (ER)-positive breast cancer. In this study, we aimed to determine acquired genomic changes in endocrine-resistant disease.

Methods: We performed DNA/RNA hybrid-capture sequencing on 12 locoregional recurrences after long-term estrogen deprivation and identified acquired genomic changes versus each tumor's matched primary.

View Article and Find Full Text PDF

Background/aims: Infectious and genetic factors are invoked, respectively in isolated biliary atresia (BA), or syndromic BA, with major extrahepatic anomalies. However, isolated BA is also associated with minor extrahepatic gut and cardiovascular anomalies and multiple susceptibility genes, suggesting common origins.

Methods: We investigated novel susceptibility genes with genome-wide association, targeted sequencing and tissue staining in BA requiring liver transplantation, independent of BA subtype.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy with an immunosuppressive microenvironment that is resistant to most therapies. IL17 is involved in pancreatic tumorigenesis, but its role in invasive PDAC is undetermined. We hypothesized that IL17 triggers and sustains PDAC immunosuppression.

View Article and Find Full Text PDF

There is a need to develop at-home phenylalanine (Phe) test kits, analogous to home glucose meters, for phenylketonuria patients who must measure their blood Phe levels frequently to adjust their diet. Unfortunately, such test kits are not available yet because of the lack of simple and inexpensive Phe-sensing elements. With the goal of developing a Phe-sensing element, we fabricated two-dimensional photonic crystal (2DPC) hydrogels that quantify human serum phenylpyruvate (PhPY), which is the product of the reaction between Phe and the enzyme phenylalanine dehydrogenase.

View Article and Find Full Text PDF

We present a new force field, AMBER ff15ipq-m, for simulations of protein mimetics in applications from therapeutics to biomaterials. This force field is an expansion of the AMBER ff15ipq force field that was developed for canonical proteins and enables the modeling of four classes of artificial backbone units that are commonly used alongside natural α residues in blended or "heterogeneous" backbones: chirality-reversed D-α-residues, the C-methylated α-residue Aib, homologated β-residues (β) bearing proteinogenic side chains, and two cyclic β residues (β; APC and ACPC). The ff15ipq-m force field includes 472 unique atomic charges and 148 unique torsion terms.

View Article and Find Full Text PDF

The human immune response to inactivated influenza vaccine is dynamic and impacted by age and preexisting immunity. Our goal was to identify postvaccination transcriptomic changes in peripheral blood mononuclear cells from children. Blood samples were obtained before and at 3 or 7 days postvaccination with 2016-2017 quadrivalent inactivated influenza vaccine and RNA sequencing was performed.

View Article and Find Full Text PDF