Publications by authors named "Horlick R"

Objective: The relationship between postsecondary students' health and academic outcomes may have important implications for their collegiate experience and their future prospects. Yet a comprehensive summary of the evidence examining this potential connection does not presently exist. Seeking to fill this gap, this study reviewed the extant literature on postsecondary students' academic outcomes and health across multiple domains.

View Article and Find Full Text PDF

Background And Aim: Tissue source has been shown to exert a significant effect on the magnitude of associations between telomere length and various health outcomes and exposures. The purpose of the present qualitative review and meta-analysis is to describe and investigate the impact of study design and methodological features on the correlation between telomere lengths measured in different tissues from the same healthy individual.

Methods: This meta-analysis included studies published from 1988 to 2022.

View Article and Find Full Text PDF

Early childhood and the pre-school stage of development constitute a dynamic period for acquisition of social-emotional competencies. Yoga and mindfulness practices (YMP) have become increasingly used in schools for social emotional learning, but less is known about their utility in early childhood settings. A systematic review using PRISMA guidelines was undertaken to explore the effect of YMP on social emotional function among preschool-aged children (3-5 years).

View Article and Find Full Text PDF

Objectives: To understand family and parent perspectives on newborn care provided at home to infants in the first 28 days of life, in order to inform behavioural interventions for improving care in low-income countries, where the majority of newborn deaths occur.

Design: A comprehensive, qualitative systematic review was conducted. MEDLINE/PubMed, Embase and Cumulative Index of Nursing and Allied Health databases were systematically searched for studies examining the views of parents and family members on newborn care at home.

View Article and Find Full Text PDF

Antibody engineering to enhance thermostability may enable further application and ease of use of antibodies across a number of different areas. A modified human IgG framework has been developed through a combination of engineering approaches, which can be used to stabilize antibodies of diverse specificity. This is achieved through a combination of complementarity-determining region (CDR)-grafting onto the stable framework, mammalian cell display and in vitro somatic hypermutation (SHM).

View Article and Find Full Text PDF

During somatic hypermutation (SHM), deamination of cytidine by activation-induced cytidine deaminase and subsequent DNA repair generates mutations within immunoglobulin V-regions. Nucleotide insertions and deletions (indels) have recently been shown to be critical for the evolution of antibody binding. Affinity maturation of 53 antibodies using in vitro SHM in a non-B cell context was compared with mutation patterns observed for SHM in vivo.

View Article and Find Full Text PDF

Human therapeutic antibody discovery has utilized a variety of systems, from in vivo immunization of human immunoglobulin-expressing mice, to in vitro display of antibody libraries. Of the in vitro antibody display technologies, mammalian cell display provides a number of advantages with the ability to co-select immunoglobulin molecules for high expression level in mammalian cells, native folding, and biophysical properties appropriate for drug development. Mammalian cell display has been achieved using either transient or stable expression systems, using a number of alternate transmembrane domains to present antibody on the cell surface.

View Article and Find Full Text PDF

Recent advances are described for the isolation and affinity maturation of antibodies that couple in vitro somatic hypermutation (SHM) with mammalian cell display, replicating key aspects of the adaptive immune system. SHM is dependent on the action of the B cell specific enzyme, activation-induced cytidine deaminase (AID). AID-directed SHM in vitro in non-B cells, combined with mammalian display of a library of human antibodies, initially naïve to SHM, can be used to isolate and affinity mature antibodies via iterative cycles of fluorescence-activated cell sorting (FACS) under increasingly stringent sort conditions.

View Article and Find Full Text PDF

A mammalian expression system has been developed that permits simultaneous cell surface display and secretion of the same protein through alternate splicing of pre-mRNA. This enables a flexible system for in vitro protein evolution in mammalian cells where the displayed protein phenotype remains linked to genotype, but with the advantage of soluble protein also being produced without the requirement for any further recloning to allow a wide range of assays, including biophysical and cell-based functional assays, to be used during the selection process. This system has been used for the simultaneous surface presentation and secretion of IgG during antibody discovery and maturation.

View Article and Find Full Text PDF

A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation.

View Article and Find Full Text PDF

Antibodies are important tools for a broad range of applications due to their high specificity and ability to recognize virtually any target molecule. However, in order to be practically useful, antibodies must be highly stable and bind their target antigens with high affinity. We present a combinatorial approach to generate high-affinity, highly stable antibodies through the design of stable frameworks, specificity grafting and maturation via somatic hypermutation in vitro.

View Article and Find Full Text PDF

A method has been developed for the rapid generation of high-affinity humanized antibodies from immunized animals without the need to make conventional hybridomas. Rearranged IgH D(J) regions were amplified from the spleen and lymph tissue of mice immunized with the human complement protein C5, fused with a limited repertoire of human germline heavy chain V-genes to form intact humanized heavy chains, and paired with a human light chain library. Completed heavy and light chains were assembled for mammalian cell surface display and transfected into HEK 293 cells co-expressing activation-induced cytidine deaminase (AID).

View Article and Find Full Text PDF

A novel approach has been developed for the isolation and maturation of human antibodies that replicates key features of the adaptive immune system by coupling in vitro somatic hypermutation (SHM) with mammalian cell display. SHM is dependent on the action of the B cell specific enzyme, activation-induced cytidine deaminase (AID), and can be replicated in non-B cells through expression of recombinant AID. A library of human antibodies, based on germline V-gene segments with recombined human regions was used to isolate low-affinity antibodies to human β nerve growth factor (hβNGF).

View Article and Find Full Text PDF

Activation of CCR8 by its ligand CCL1 may play an important role in diseases such as asthma, multiple sclerosis, and cancer. The study of small molecule CCR8 antagonists will help establish the validation of these hypotheses. We report the design, synthesis, and progress toward optimization of potent small molecule CCR8 antagonists identified from a high-throughput screen.

View Article and Find Full Text PDF

Basic fibroblast growth factor (bFGF) is an important mitogen and neurotrophic factor that binds and signals through the high-affinity receptor, fibroblast growth factor receptor 1 (FGFR1). However, only a limited amount of information is available concerning the molecular forms and anatomical distribution of fibroblast growth factors (FGFs) in the normal human brain. We found multiple bFGF and FGFR1 mRNA transcripts which vary in expression pattern across human brain regions.

View Article and Find Full Text PDF

The estrogen-related receptor alpha (ERRalpha) is an orphan receptor belonging to the nuclear receptor superfamily. The physiological role of ERRalpha has yet to be established primarily because of lack of a natural ligand. Herein, we describe the discovery of the first potent and selective inverse agonist of ERRalpha.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha (PGC-1alpha) is a transcriptional coactivator that is a key component in the regulation of energy production and utilization in metabolic tissues. Recent work has identified PGC-1alpha as a strong coactivator of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha), implicating ERRalpha as a potential mediator of PGC-1alpha action. To understand the role of ERRalpha in PGC-1alpha signaling, a parallel approach of high-throughput screening and gene-expression analysis was used to identify ERRalpha small-molecule regulators and target genes.

View Article and Find Full Text PDF

The melanocortin 4 receptor (MC4R) plays an important role in body weight regulation and energy homeostasis. Administration of peptidic MC4R antagonists (usually by intracerebro ventricular injection) has been shown in the literature to increase body weight and/or food intake in several rodent models. We report here the identification of a novel nonpeptidic MC4R antagonist and its effects on tumor-induced weight loss in mice following peripheral administration.

View Article and Find Full Text PDF

Structure-activity studies on benzamide 1 obtained from library screening led to the discovery of a novel series of potent and selective glycine transporter type-2 inhibitors.

View Article and Find Full Text PDF

1. Although endotoxaemia induces kinin B(1) receptors in several animal models, this condition is not documented in primates. This study examined the up-regulation of haemodynamic and pro-inflammatory responses to the B(1) agonist des-Arg(10)-kallidin (dKD) in a non-human primate model.

View Article and Find Full Text PDF

Episomal vectors offer a powerful alternative to integrative recombination for transgene expression in mammalian cells. In this study, various combinations of G protein-coupled receptors (GPCRs) and the G protein subunit G(i2)alpha, were stably expressed from separate episomal vectors in 293-EBNA (293E) cells. Each episome did not adversely affect the others, as gauged by episomal copy number, steady-state mRNA levels and the presence of functional receptors and G protein.

View Article and Find Full Text PDF

Screening Pharmacopeia's encoded combinatorial libraries has led to the identification of potent, selective, competitive antagonists at the bradykinin B1 receptor. Libraries were screened using a displacement assay of [3H]-des-Arglo-kallidin ([3H]-dAK) at IMR-90 cells expressing an endogenous human B1 receptor (Bmax = 20,000 receptors/cell, K(D) = 0.5+/-0.

View Article and Find Full Text PDF

The galanin neuropeptide system is widely distributed throughout the brain and periphery and is thought to play a role in feeding, pain and reproduction. To evaluate the human galanin receptor 1 as a potential therapeutic target, we fully characterized its interaction with several galanin-like peptides. The human galanin receptor 1 receptor was stably expressed using an episomal system in human embryonic kidney 293E cells.

View Article and Find Full Text PDF

Several cell lines have become widely used in biotechnology, pharmaceutical and academic laboratories because of their desirable characteristics. Among these, the human embryonic kidney cell line HEK293 is one of the most versatile and powerful for expression of recombinant proteins, permitting the establishment of stable cell lines in just three weeks. Unfortunately, HEK293 cells adhere weakly to tissue culture grade plastic.

View Article and Find Full Text PDF

Human HEK293 cells that stably express the Epstein Barr nuclear antigen 1 (EBNA1) support the episomal replication of plasmids containing the Epstein Barr virus origin of replication (EBV oriP). A 293EBNA (293E) cell line expressing the human corticotropin-releasing hormone receptor subtype I (CRHR1) from an episomal plasmid was generated (293CR1s), analyzed, adapted to spinner culture, and scaled-up for production in less than 6 weeks. Forty-seven stable CHO cell lines transfected with CRHR1 were also isolated.

View Article and Find Full Text PDF