Publications by authors named "Horinaka M"

Background: Histone deacetylase (HDAC) inhibitors have been reported to exhibit immunomodulatory activities, including the upregulation of major histocompatibility complex class I (MHC class I). Although the immunoproteasome plays a pivotal role in MHC class I antigen presentation, its effect on immunotherapy for clear cell renal cell carcinoma (ccRCC) remains unclear.

Methods: This study assessed whether OBP-801, a novel HDAC inhibitor, affects the expression of immunoproteasome subunits and subsequently the MHC class-I-mediated anti-cancer immunity in ccRCC.

View Article and Find Full Text PDF

Purpose: Rearranged during transfection (RET) aberrations represent a targetable oncogene in several tumor types, with RET inhibitors displaying marked efficacy. However, some patients with RET-aberrant cancer are insensitive to RET tyrosine kinase inhibitors (TKIs). Recently, drug-tolerant mechanisms have attracted attention as targets for initial therapies to overcome drug resistance.

View Article and Find Full Text PDF

We previously reported that combined therapy with epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) osimertinib and AXL inhibitor ONO-7475 is effective in preventing the survival of drug-tolerant cells in high-AXL-expressing EGFR-mutated non-small cell lung cancer (NSCLC) cells. Nevertheless, certain residual cells are anticipated to eventually develop acquired resistance to this combination therapy. In this study, we attempted to establish a multidrug combination therapy from the first-line setting to overcome resistance to this combination therapy in high-AXL-expressing EGFR-mutated NSCLC.

View Article and Find Full Text PDF
Article Synopsis
  • Lazertinib is a new drug effective for treating EGFR-mutant lung cancer, but resistance to it often develops, leading researchers to seek new treatment combinations.
  • The study found that targeting AXL can reduce lung cancer cell survival when combined with lazertinib, as AXL activation plays a role in resistance to the drug.
  • Further, using a triple therapy approach that includes AXL inhibitors and MCL-1 or YAP inhibitors alongside lazertinib significantly decreases cell viability and boosts cell death, showing promise in overcoming lazertinib resistance.
View Article and Find Full Text PDF

Background: Recent therapeutic strategies for KRAS-mutated cancers that inhibit the MAPK pathway have attracted considerable attention. The RAF/MEK clamp avutometinib (VS-6766/CH5126766/RO5126766/CKI27) is promising for patients with KRAS-mutated cancers. Although avutometinib monotherapy has shown clinical activity in patients with KRAS-mutated cancers, effective combination strategies will be important to develop.

View Article and Find Full Text PDF

Recently, novel Kirsten rat sarcoma viral oncogene homolog (KRAS) inhibitors have been clinically developed to treat KRAS G12C-mutated non-small cell lung cancer (NSCLC) patients. However, achieving complete tumor remission is challenging. Therefore, the optimal combined therapeutic intervention with KRAS G12C inhibitors has a potentially crucial role in the clinical outcomes of patients.

View Article and Find Full Text PDF

Small molecule-based selective cancer cell-targeting can be a desirable anticancer therapeutic strategy. Aiming to discover such small molecules, we previously developed phenylcyclopropylamine (PCPA)-drug conjugates (PDCs) that selectively release anticancer agents in cancer cells where lysine-specific demethylase 1 (LSD1) is overexpressed. In this work, we designed PCPA-entinostat conjugates for selective cancer cell targeting.

View Article and Find Full Text PDF

Few treatment options exist for pleural mesothelioma (PM), which is a progressive malignant tumor. However, the efficacy of molecular-targeted monotherapy is limited, and further therapeutic strategies are warranted to treat PM. Recently, the cancer cell-cycle checkpoint inhibitors have attracted attention because they disrupt cell-cycle regulation.

View Article and Find Full Text PDF

Background: Recent advances have been achieved in the genetic diagnosis and therapies against malignancies due to a better understanding of the molecular mechanisms underlying carcinogenesis. Since active preventive methods are currently insufficient, the further development of appropriate preventive strategies is desired.

Methods: We searched for drinks that reactivate the functions of tumor-suppressor retinoblastoma gene (RB) products and exert anti-inflammatory and antioxidant effects.

View Article and Find Full Text PDF

γ-Glutamylcyclotransferase (GGCT) is highly expressed in multiple types of cancer tissues and its knockdown suppresses the growth of cancer cells in vitro and in vivo. Although GGCT is a promising target for cancer therapy, the mechanisms underlying the antitumor effects remain unclear. The knockdown of GGCT inhibited the MEK-ERK pathway, and activated the tumor suppressor retinoblastoma gene (RB) at the protein level in cancer cell lines.

View Article and Find Full Text PDF

Unlabelled: Aspirin has gained great attention as a cancer preventive agent. Our previous study revealed that the low-dose aspirin prevents colorectal tumor recurrence in Japanese patients with colorectal adenomas and/or adenocarcinomas, whereas aspirin increases risks in smokers and has no effects on regular drinkers. Our recent study revealed that aspirin reduces polyp growth in Japanese patients with familial adenomatous polyposis (FAP).

View Article and Find Full Text PDF
Article Synopsis
  • Anaplastic lymphoma kinase (ALK) inhibitors like lorlatinib often don't completely eliminate cancer cells in advanced ALK-rearranged non-small cell lung cancer (NSCLC) due to a subset of tumor cells developing adaptive resistance.
  • The study identified that the activation of epidermal growth factor receptor (EGFR) signaling contributes to this resistance, triggered by a specific growth factor via c-Jun activation.
  • Combining EGFR inhibitors with lorlatinib significantly reduces tumor regrowth in lab models, suggesting potential new treatment strategies for patients with ALK-rearranged lung cancer.
View Article and Find Full Text PDF

Anticancer drug delivery by small molecules offers a number of advantages over conventional macromolecular drug delivery systems. We previously developed phenylcyclopropylamine (PCPA)-drug conjugates (PDCs) as small-molecule-based drug delivery vehicles for targeting lysine-specific demethylase 1 (LSD1)-overexpressing cancers. In this study, we applied this PDC strategy to the HDAC-inhibitory anticancer agent vorinostat.

View Article and Find Full Text PDF

Colorectal cancer is a significant cause of morbidity and represents a serious public health issue in many countries. The development of a breakthrough preventive method for colorectal cancer is urgently needed. Aspirin has recently been attracting attention as a cancer preventive drug, and its inhibitory effects on the development of various cancers have been reported in several large prospective studies.

View Article and Find Full Text PDF

Edible plant-derived nanovesicles have been explored as effective materials for preventing colorectal cancer (CRC) incidence, dependent on gene status, as a K-Ras-activating mutation via the macropinocytosis pathway. Approximately 70% of CRC harbors the p53 mutation, which is strongly associated with a poor prognosis for CRC. However, it has not been revealed whether p53 inactivation activates the macropinocytosis pathway or not.

View Article and Find Full Text PDF

As colon cancer is one of the most common cancers in the world, practical prevention strategies for colon cancer are needed. Recently, treatment with aspirin and/or 5-aminosalicylic acid-related agents was reported to reduce the number of intestinal polyps in patients with familial adenomatous polyposis. To evaluate the mechanism of aspirin and 5-aminosalicylic acid for suppressing the colon polyp growth, single and combined effects of 5-aminosalicylic acid and sodium salicylate (metabolite of aspirin) were tested in the two human colon cancer cells with different cyclooxygenase-2 expression levels and intestinal polyp-derived cells from familial adenomatous polyposis model mouse.

View Article and Find Full Text PDF

Multiple myeloma (MM) is characterized by remarkable cytogenetic/molecular heterogeneity among patients and intraclonal diversity even in a single patient. We previously demonstrated that PDPK1, the master kinase of series of AGC kinases, is universally active in MM, and plays pivotal roles in cell proliferation and cell survival of myeloma cells regardless of the profiles of cytogenetic and genetic abnormalities. This study investigated the therapeutic efficacy and mechanism of action of dual blockade of two major PDPK1 substrates, RSK2 and AKT, in MM.

View Article and Find Full Text PDF
Article Synopsis
  • ALK-TKIs are effective for ALK-rearranged lung cancer, but complete responses are uncommon, prompting investigation into how some cancer cells become drug-tolerant.
  • Research found that activation of HER3 and a process called mesenchymal-to-epithelial transition, regulated by ZEB1 proteins, helps these drug-tolerant cells survive.
  • Combining pan-HER inhibitor afatinib with ALK-TKIs significantly improves treatment results and prevents tumor regrowth in patients with specific cancer characteristics, showing HER3's critical role in treatment resistance.
View Article and Find Full Text PDF

EGFR-T790M mutation is a major mechanism underlying acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs) in lung cancer with mutated EGFR. However, differences in the biological characteristics of T790M tumors based on treatment regimens with each generation of EGFR-TKI are not fully understood. We established cell lines with acquired resistance harboring EGFR-T790M mutation derived from xenograft tumors treated with each generation of EGFR-TKI and examined their biological characteristics with respect to third-generation EGFR-TKI osimertinib sensitivity.

View Article and Find Full Text PDF

Cellular senescence is a state of irreversible cell growth arrest that functions as a biological defense mechanism against severe DNA damage. Senescent cells with DNA damage produce pro-inflammatory cytokines, such as IL-6 and IL-8, and this phenomenon is called the senescence-associated secretory phenotype (SASP). SASP factors have been implicated in various disorders, including cancer.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase-tyrosine kinase inhibitors (ALK-TKIs) have improved clinical outcomes in non-small cell lung cancer (NSCLC) harboring ALK- rearrangements. However, a small population of tumor cells survives due to adaptive resistance under drug pressure and ultimately acquires drug resistance. Thus, it is necessary to elucidate the mechanisms underlying the prevention of drug resistance to improve the prognosis of patients with ALK-rearranged NSCLC.

View Article and Find Full Text PDF

Cigarette smoking and alcohol consumption are major risk factors for lifestyle-related diseases. Although it has been reported that the combination of these habits worsens risks, the underlying mechanism remains elusive. Reactive carbonyl species (RCS) cause chemical modifications of biological molecules, leading to alterations in cellular signaling pathways, and total RCS levels have been used as a lipid peroxidation marker linked to lifestyle-related diseases.

View Article and Find Full Text PDF

Various molecular-targeting drugs have markedly improved the treatment of patients with breast cancer. As yet, therapies for triple-negative breast cancer are mainly cytotoxic agents. To investigate the novel therapy for triple-negative breast cancer, we herein examined the effects of a new combination therapy comprising a RAF/MEK inhibitor CH5126766, also known as VS-6766, which we originally discovered, and eribulin.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess the levels of ocular surface mucin in patients with atopic and vernal keratoconjunctivitis (AKC/VKC) by examining specific mRNA expression related to mucin genes.
  • Nineteen patients were categorized into stable and active groups based on disease severity, and impression cytology was performed to measure mRNA levels using real-time PCR.
  • Findings revealed that active patients showed reduced mucin mRNA levels compared to stable ones, and there was a notable correlation between clinical scores and mRNA expression indicating the relationship between disease severity and ocular surface mucin changes.
View Article and Find Full Text PDF

Metabolic reprogramming leading to aerobic glycolysis, termed the "Warburg effect," is a critical property of cancer cells. However, the precise mechanisms underlying this phenomenon are not fully understood. A growing body of evidence indicates that γ-glutamylcyclotransferase (GGCT), an enzyme involved in glutathione homeostasis that is highly expressed in many types of cancer, represents a promising therapeutic target.

View Article and Find Full Text PDF