Publications by authors named "Horacio R Corti"

The Li ion mobility through the porous cathode is a critical aspect in the development of commercial Li-air batteries. The bulk transport properties of lithium salts in organic solvents are not reliable parameters for the design of this type of battery since confinement could significantly modify the transport properties, especially when pore diameters are below 10 nm. In this work, we studied the effect of the carbon mesostructure and surface charge on the diffusion of LiTf and LiTFSI salts dissolved in diglyme, typical electrolytes for lithium-air batteries.

View Article and Find Full Text PDF

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a quasi-non-destructive technique capable of analyzing the outer monolayers of a solid sample and detecting all elements of the periodic table and their isotopes. Its ability to analyze the outer monolayers resides in sputtering the sample surface with a low-dose primary ion gun, which, in turn, imposes the use of a detector capable of counting a single ion at a time. Consequently, the detector saturates when more than one ion arrives at the same time hindering the use of TOF-SIMS for quantification purposes such as isotope ratio estimation.

View Article and Find Full Text PDF

Phosphoric acid (PA) confined in a commercial mesoporous silica (CARIACT G) with porous size in the range of 3 to 10 nm was studied in relation to its coordination with the silanol groups on the silica surface as a function of temperature, up to 180 °C, using P and Si MAS NMR spectroscopy. As the temperature increases, the coordination of Si and P in the mesopores depends on the pore size, that is, on the area/volume ratio of the silica matrix. In the mesoporous silica with the higher pore size (10 nm), a considerable fraction of PA is nonbonded to the silanol groups on the surface, and it seems to be responsible for its higher conductivity at temperatures above 120 °C as compared to the samples with a smaller pore size.

View Article and Find Full Text PDF

In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence.

View Article and Find Full Text PDF

This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems.

View Article and Find Full Text PDF

The increasing interest in lithium-oxygen batteries (LOB), having the highest theoretical energy densities among the advanced lithium batteries, has triggered the search for in-situ characterization techniques, including Electrochemical Atomic Force Microscopy (EC-AFM). In this work we addressed the characterization of the formation and decomposition of lithium peroxide (LiO) on a carbon cathode using a modified AFM technique, called Flow Electrochemical Atomic Force Microscopy (FE-AFM), where an oxygen-saturated solution of the non-aqueous lithium electrolyte is circulated through a liquid AFM cell. This novel technique does not require keeping the AFM equipment inside a glove-box, and it allows performing a number of experiments using the same substrate with different electrolytes without disassembling the cell.

View Article and Find Full Text PDF

In this work, we revisited the glass transition temperature (Tg) behavior of bulk and confined water-glycerol solutions as a function of the mixture composition and size of the confinement media, with the aim to shed some light on some controversies found in the literature. In the case of bulk mixtures, some discrepancies are observed due to the differences in the way of calculating Tg from the DSC experiments and differences in the protocols of cooling/reheating. However, unphysical behavior observed below the eutectic composition can be due to the crystallization of water during the cooling of the mixture.

View Article and Find Full Text PDF

The increasing interest in developing safe and sustainable energy storage systems has led to the rapid rise in attention to superconcentrated electrolytes, commonly called water-in-salt (WiS). Several works indicate that the transport properties of these liquid electrolytes are related to the presence of nanodomains, but a detailed characterization of such structure is missing. Here, the structural nano-heterogeneity of lithium WiS electrolytes, comprising lithium trifluoromethanesulfonate (LiTf) and bis(trifluoromethanesulfonyl)imide (LiTFSI) solutions as a function of concentration and temperature, was assessed by resorting to the analysis of small-angle neutron scattering (SANS) patterns.

View Article and Find Full Text PDF

Mesoporous carbons (MCs) with different pore sizes were synthesized and evaluated as a catalyst support for fuel cells. The MCs were obtained from resorcinol-formaldehyde precursors, polymerized in the presence of polydiallyldimethylammonium chloride (cationic polyelectrolyte) as a structuring agent and commercial silica (Sipernat® or Aerosil®) as the hard template. The MC obtained with Aerosil® shows a broad pore size distribution with a maximum at 21 nm.

View Article and Find Full Text PDF

The present work describes the development of an environmental chamber (EC), with temperature and humidity control, for measuring ice growth kinetics over a substrate with an atomic force microscope (AFM). The main component of the EC is an AFM fluid glass cell. The relative humidity (RH) inside the EC is set by the flow of a controlled ratio of dry and humid nitrogen gases.

View Article and Find Full Text PDF

Glycol ethers, or glymes, have been recognized as good candidates as solvents for lithium-air batteries because they exhibit relatively good stability in the presence of superoxide radicals. Diglyme (bis(2-methoxy-ethyl)ether), in spite of its low donor number, has been found to promote the solution mechanism for the formation of LiO during the discharge reaction, leading to large deposits, that is, high capacities. It has been suggested that lithium salt association in these types of solvents could be responsible for this behavior.

View Article and Find Full Text PDF

There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv.

View Article and Find Full Text PDF

A DSC study of dilute glassy LiCl aqueous solutions in the water-dominated regime provides direct evidence of a glass-to-liquid transition in expanded high density amorphous (eHDA)-type solutions. Similarly, low density amorphous ice (LDA) exhibits a glass transition prior to crystallization to ice I. Both glass transition temperatures are independent of the salt concentration, whereas the magnitude of the heat capacity increase differs.

View Article and Find Full Text PDF

The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model.

View Article and Find Full Text PDF

β-Cyclodextrin (β-CD)-grafted dextrans with spacer arms of different length were employed to evaluate the impact of supramolecular interactions on invertase activity. The modified dextrans were used as single additives or combined with trehalose in freeze-dried formulations containing invertase. Enzyme activity conservation was analyzed after freeze-drying and thermal treatment.

View Article and Find Full Text PDF

The diffusion of ferrocene methanol in supercooled glycerol-water mixtures has been measured over a wide viscosity range, which allowed analyzing the composition dependence of the Stokes-Einstein breakdown (diffusion-viscosity decoupling). The observed decoupling exhibits a common behavior for all studied compositions (glycerol mass fractions between 0.7 and 0.

View Article and Find Full Text PDF

The concentration and temperature dependence of the viscosity of supercooled polyol (sucrose, trehalose, glucose and glycerol) aqueous solutions was analyzed with the aim of finding simple and accurate correlation equations for the description of this transport property. Three different equations were examined and compared, two empirical equations and an equation derived from the Avramov-Milchev (AM) model. If a description of the viscosity temperature dependence is intended, the AM model gives the best representation of the experimental data with only two adjustable parameters, which have a clear physical meaning.

View Article and Find Full Text PDF

High activity mesoporous Pt/Ru catalysts with 2D-hexagonal structure were synthesized using a triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (Pluronic F127) template. The normalized mass activities for the methanol oxidation reaction (MOR) of the Pt/Ru catalysts with a regular array of pores is higher than those reported for nanoparticulated Pt/Ru catalysts. Different kinetic parameters, as Tafel slope and activation energy, were obtained for the MOR on the mesoporous catalysts.

View Article and Find Full Text PDF
Article Synopsis
  • PEG-based low-generation dendrimers were tested for their effectiveness as enzyme stabilizers during various treatments, with a focus on a novel dendrimer (DGo-CD) combining PEG with β-CD.
  • DGo-CD demonstrated superior protection against enzyme denaturation compared to PEG or β-CD alone during freeze-thawing and showed synergistic effects when used with trehalose during freeze-drying.
  • The study highlights that the crystallinity of protective matrices negatively impacts enzyme stability, and that the integration of dendrimers can enhance protection against crystallization issues associated with trehalose, thanks to their ability to influence polymer-enzyme interactions.
View Article and Find Full Text PDF

The viscosity of supercooled glycerol aqueous solutions, with glycerol mass fractions between 0.70 and 0.90, have been determined to confirm that the Avramov-Milchev equation describes very well the temperature dependence of the viscosity of the binary mixtures including the supercooled regime.

View Article and Find Full Text PDF

The P(2)O(5)-water system has the widest range of continuously glass-forming compositions known for any glassformer + water binary system. Despite the great range of structures explored by the glasses and liquids in this system, the glass transition temperature (T(g)) itself varies in a simple monotonic fashion. However the values of T(g) reported in the literature show wide disagreement, linked to the different methods of measurement employed.

View Article and Find Full Text PDF

In this work we studied the effect of NaCl on the thermodynamic and dynamic properties of supercooled water, for salt concentrations between 0.19 and 1.33 mol kg(-1), using molecular dynamic simulations for TIP5P∕E water model and ion parameters specially designed to be used in combination with this potential.

View Article and Find Full Text PDF

The properties of water clusters (H(2)O)(n) over a broad range of sizes (n=4-100) were studied by microcanonical parallel tempering Monte Carlo and replica exchange molecular dynamics simulations at temperatures between 20 and 300 K, with special emphasis in the understanding of relation between the structural transitions and dipole behavior. The effect of the water interaction potential was analyzed using six nonpolarizable models, but more extensive calculations were performed using the TIP4P-ice water model. We find that, in general, the dipole moment of the cluster increases significantly as the cluster melts, suggesting that it could be used to discriminate between the solidlike and liquidlike phases.

View Article and Find Full Text PDF

The electrical conductivity of CsCl, KCl, Bu(4)NBr, and Bu(4)NI was studied in stable and supercooled (metastable) sucrose and trehalose aqueous solutions over a wide viscosity range. The results indicate that large positive deviations from the Walden rule occur in these systems due to the higher tendency of the ions to move in water-rich regions, as previously observed for NaCl and MgCl(2). The electrical molar conductivity viscosity dependence can be described with a fractional Walden rule (Lambdaeta(alpha) = constant), where alpha is a decoupling parameter which increases with ionic size and varies between 0.

View Article and Find Full Text PDF