The cholesterol-ester transfer protein (CETP) exchanges lipids between high-density lipoproteins (HDLs) and low-density lipoproteins (LDLs). The excessive transport of lipids from HDLs to LDLs mediated by this protein can cause an alteration in the deposition of lipoproteins onto the arterial walls, thus promoting the development of arteriosclerosis. Different CETP inhibitors have been tested in recent years, but none has been confirmed as being effectively palliative for the disease.
View Article and Find Full Text PDFDiscoidal high-density lipoproteins (D-HDL) are critical intermediates in reverse cholesterol transport. Most of the present knowledge of D-HDL is based on studies with reconstituted lipoprotein complexes of apolipoprotein A-I (apoA-I) obtained by cholate dialysis (CD). D-HDL can also be generated by the direct microsolubilization (DM) of phospholipid vesicles at the gel/fluid phase transition temperature, a process mechanistically similar to the "in vivo" apoAI lipidation via ABCA1.
View Article and Find Full Text PDFApolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins. This protein has key functions in lipoprotein metabolism and its plasma concentration is inversely correlated with the incidence of atherosclerosis and cardiovascular diseases. There is an increasing need to develop methods for efficient production of recombinant apoA-I for using it in basic research or pharmacological therapy.
View Article and Find Full Text PDF