Introduction: Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are undifferentiated cells with self-renewing ability and multi-lineage differentiation beneficial for regenerative medicine. Nano scaffolds are novel materials employed in bone repair and regeneration. Nisin is a prebiotic that can increase stem cells' lifespan and proliferation.
View Article and Find Full Text PDFObjectives: Based on the recent advancements in cell therapy techniques, we aimed to evaluate the efficacy of transurethral injection of autologous adipose-derived stem cells, muscle-derived stem cells, and co-cultured cells for the rehabilitation of stress urinary incontinence rat models. We hypothesized that the utilization of co-cultured stem cells could result in enhanced therapeutic outcomes attributed to their more comprehensive environment of paracrine factors and cytokines.
Methods: We performed bilateral pudendal nerve transection surgeries to simulate urinary incontinence in 25 female Wistar rats and employed urodynamic evaluations to confirm the injury.
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents have a broad range of effects in myoblast differentiation in-vitro.
View Article and Find Full Text PDF