Publications by authors named "Hopfinger A"

Background: Dysregulation of adipokines is considered a key mechanism of chronic inflammation in metabolic syndrome. Some adipokines affect food intake by crossing the blood/brain barrier. The adipokine chemerin is associated with metabolic syndrome, cardiovascular diseases and immune response.

View Article and Find Full Text PDF

Obesity represents a worldwide health challenge, and the condition is accompanied by elevated risk of cardiovascular diseases caused by metabolic dysfunction and proinflammatory adipokines. Among those, the immune-modulatory cathelicidin antimicrobial peptide (human: CAMP; murine: CRAMP) might contribute to the interaction of the innate immune system and metabolism in these settings. We investigated systemic CAMP/CRAMP levels in experimental murine models of atherosclerosis, myocardial infarction and cardiovascular patients.

View Article and Find Full Text PDF

Understanding the complex interactions between metabolism and the immune system ("metaflammation") is crucial for the identification of key immunomodulatory factors as potential therapeutic targets in obesity and in cardiovascular diseases. Cathelicidin antimicrobial peptide (CAMP) is an important factor of innate immunity and is expressed in adipocytes. CAMP, therefore, might play a role as an adipokine in metaflammation and adipose inflammation.

View Article and Find Full Text PDF

Recent investigation has revealed the significant role of Cathelicidin antimicrobial peptide (CAMP) in infection defense and innate immunity processes in adipose tissue. Meanwhile, knowledge of its regulation and functions in metabolic contexts as an adipokine remains sparce. The present study investigated the postprandial regulation of circulating CAMP levels during oral glucose tolerance tests (OGTTs).

View Article and Find Full Text PDF

Introduction: Obesity and related diseases are among the main public health issues in the western world. They are thought to be caused by a state of chronic, low-grade inflammation. Cathelicidin antimicrobial peptide (CAMP) was recently discovered to be expressed and secreted by adipocytes.

View Article and Find Full Text PDF

Background: The postprandial regulation of angiopoietin-like proteins (Angptls) and their expression in adipocytes is poorly characterized.

Objective: Circulating Angptl3 and 4 were analyzed in healthy individuals undergoing either an oral lipid tolerance test (OLTT; n = 98) or an oral glucose tolerance test (OGTT; n = 99). Venous blood was drawn after 0, 2, 4, and 6 h during OLTT and after 0, 1, and 2 h during OGTT.

View Article and Find Full Text PDF

Background And Aim: CAMP (Cathelicidin antimicrobial peptide) expression in adipocytes is regulated by Toll-like receptor (TLR) agonists. Secreted adipokines such as CTRP-3 have been suggested to participate in innate immune signaling in adipose tissue (AT). This study investigates whether TLR-induced CAMP expression in adipocytes is antagonized by CTRP-3.

View Article and Find Full Text PDF

Data on the quantification of the potentially neurotrophic adipo-myokine METRNL (Meteorin-like protein) in human cerebrospinal fluid (CSF) are lacking and migration of this secreted protein across the blood-brain barrier (BBB) is uncertain. In the present pilot study, METRNL concentrations were quantified by ELISA in paired serum and CSF samples of 260 patients (107 males, 153 females) undergoing neurological evaluation. METRNL was abundant in serum (801.

View Article and Find Full Text PDF

Recent data argue for a pro-inflammatory role of CAMP (cathelicidin antimicrobial peptide) in adipocytes and adipose tissue (AT) and for regulatory circuits involving TLRs. In order to investigate regulatory effects of TLR2 and TLR4, 3T3-L1 adipocytes were stimulated with TLR2 agonistic lipopeptide MALP-2 and with TLR4 agonist LPS in presence or absence of signal transduction inhibitors. CAMP gene expression was analysed by quantitative real-time PCR in adipocytes and in murine AT compartments and cellular subfractions.

View Article and Find Full Text PDF

Context: Data on the presence/quantification of the neurotrophic adipokines retinol-binding protein-4 (RBP4), clusterin, and pigment epithelium-derived factor (PEDF) in human cerebrospinal fluid (CSF) are scarce and migration of these adipokines across of the blood-brain barrier (BBB) is uncertain.

Objective: This work aimed to quantify RBP4, PEDF, and clusterin in paired serum and CSF samples of patients undergoing neurological evaluation.

Methods: A total of 268 patients (109 male, 159 female) were included.

View Article and Find Full Text PDF

Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models.

View Article and Find Full Text PDF

The objective of this research was to investigate physicochemical properties of an active pharmaceutical ingredient (API) that influence cyclodextrin complexation through experimental and computational studies. Native β-cyclodextrin (B-CD) and two hydroxypropyl derivatives were first evaluated by conventional phase solubility experiments for their ability to complex four poorly water-soluble nonsteroidal anti-inflammatory drugs (NSAIDs). Differential scanning calorimetry was used to confirm complexation.

View Article and Find Full Text PDF

Little attention has been given to the selection of trial descriptor sets when designing a QSAR analysis even though a great number of descriptor classes, and often a greater number of descriptors within a given class, are now available. This paper reports an effort to explore interrelationships between QSAR models and descriptor sets. Zhou and co-workers (Zhou et al.

View Article and Find Full Text PDF

Introduction: Many of the general anesthetics, currently used in clinical practice, work through interactions with GABA(A) receptors. The last 2 decades has witnessed substantial progress in defining the molecular mechanisms by which general anesthetics interact with GABA(A) receptor sites. However, despite progress in the basic scientific understanding of the mechanism of action of general anesthetics, introduction of novel general anesthetic agents into clinical practice has proven quite challenging.

View Article and Find Full Text PDF

Receptor-dependent four-dimensional quantitative structure-activity relationship (RD-4D-QSAR) studies were applied on a series of 21 peptides reversible inhibitors of Trypanosoma cruzi trypanothione reductase (TR) (Amino Acids, 20, 2001, 145). The RD-4D-QSAR (J Chem Inform Comp Sci, 43, 2003, 1591) approach can evaluate multiple conformations from molecular dynamics simulation and several superposition structure alignments inside a box composed by unitary cubic cells. The descriptors are the occupancy frequency of the atoms types inside the grid cells.

View Article and Find Full Text PDF

The usefulness and utility of QSAR modeling depends heavily on the ability to estimate the values of molecular descriptors relevant to the endpoints of interest followed by an optimized selection of descriptors to form the best QSAR models from a representative set of the endpoints of interest. The performance of a QSAR model is directly related to its molecular descriptors. QSAR modeling, specifically model construction and optimization, has benefited from its ability to borrow from other unrelated fields, yet the molecular descriptors that form QSAR models have remained basically unchanged in both form and preferred usage.

View Article and Find Full Text PDF

The human ether-a-go-go related gene (hERG) potassium ion channel plays a key role in cardiotoxicity and is therefore a key target as part of preclinical drug discovery toxicity screening. The PubChem hERG Bioassay data set, composed of 1668 compounds, was used to construct an in silico screening model. The corresponding trial models were constructed from a descriptor pool composed of 4D fingerprints (4D-FP) and traditional 2D and 3D VolSurf-like molecular descriptors.

View Article and Find Full Text PDF

Drug design is a process driven by innovation and technological breakthroughs involving a combination of advanced experimental and computational methods. A broad variety of medicinal chemistry approaches can be used for the identification of hits, generation of leads, as well as to accelerate the optimization of leads into drug candidates. The quantitative structure-activity relationship (QSAR) formalisms are among the most important strategies that can be applied for the successful design new molecules.

View Article and Find Full Text PDF

Blockage of the human ether-a-go-go related gene (hERG) potassium ion channel is a major factor related to cardiotoxicity. Hence, drugs binding to this channel have become an important biological end point in side effects screening. A set of 250 structurally diverse compounds screened for hERG activity from the literature was assembled using a set of reliability filters.

View Article and Find Full Text PDF

Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis monophosphate kinase (TMPKmt) is essential to DNA replication. Thus, this enzyme represents a promising target for developing new drugs against TB.

View Article and Find Full Text PDF

4D quantitative structure-activity relationship (QSAR) and 3D pharmacophore models were built and investigated for cytotoxicity using a training set of 25 lamellarins against human hormone dependent T47D breast cancer cells. Receptor-independent (RI) 4D QSAR models were first constructed from the exploration of eight possible receptor-binding alignments for the entire training set. Since the training set is small (25 compounds), the generality of the 4D QSAR paradigm was then exploited to devise a strategy to maximize the extraction of binding information from the training set and to also permit virtual screening of diverse lamellarin chemistry.

View Article and Find Full Text PDF

The original quantitative structure-activity relationship (QSAR) formulation was proposed by Hansch and Fujita in the 1960's and, since then QSAR analysis has evolved as a mature science, due mainly to the advances that occurred in the past two decades in the fields of molecular modeling, data analysis algorithms, chemoinformatics, and the application of graph theory in chemistry. Moreover, it is also worthy of note the exponential progress that have occurred in software and hardware development. In this context, a myriad of QSAR methods exist; from the considered "classical" approaches (known as two-dimensional (2D) QSAR), to three-dimensional (3D) and multidimensional (nD) QSAR ones.

View Article and Find Full Text PDF

Thymidine monophosphate kinase (TMPK) has emerged as an attractive target for developing inhibitors of Mycobacterium tuberculosis growth. In this study the receptor-independent (RI) 4D-QSAR formalism has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 5'-thiourea-substituted alpha-thymidine inhibitors. Models were developed for the entire training set and for a subset of the training set consisting of the most potent inhibitors.

View Article and Find Full Text PDF

The MM-PBSA MD method was used to estimate the affinity, as represented by log k(b), of each of a variety of biologically active molecules to a carbon nanotube in an aqueous environment. These ligand-receptor binding simulations were calibrated by first estimating the log k(b) values for eight ligands to human serum albumin, HSA, whose log k(b) values have been observed. A validation linear correlation equation was established [R(2) = 0.

View Article and Find Full Text PDF