Introduction: The serine/threonine kinase 17B (STK17B) is involved in setting the threshold for T cell activation and its absence sensitizes T cells to suboptimal stimuli. Consequently, STK17B represents an attractive potential target for cancer immunotherapy.
Methods: To assess the potential of STK17B as an immuno-oncology target, we developed potent and selective tool compounds from starting points in Blueprint Medicines Corporation's proprietary kinase inhibitor library.
New challenges and other topics in non-clinical safety testing of biotherapeutics were presented and discussed at the nineth European BioSafe Annual General Membership meeting in November 2019. The session topics were selected by European BioSafe organization committee members based on recent company achievements, agency interactions and new data obtained in the non-clinical safety testing of biotherapeutics, for which data sharing would be of interest and considered as valuable information. The presented session topics ranged from strategies of testing, immunogenicity prediction, bioimaging, and developmental and reproductive toxicology (DART) assessments to first-in-human (FIH) dose prediction and bioanalytical challenges, reflecting the entire space of different areas of expertise and different molecular modalities.
View Article and Find Full Text PDFPurpose: CD40 agonists hold great promise for cancer immunotherapy (CIT) as they enhance dendritic cell (DC) activation and concomitant tumor-specific T-cell priming. However, the broad expression of CD40 accounts for sink and side effects, hampering the efficacy of anti-CD40 antibodies. We hypothesized that these limitations can be overcome by selectively targeting CD40 agonism to the tumor.
View Article and Find Full Text PDFFructose consumption causes metabolic diseases and renal injury primarily in the renal cortex where fructose is metabolized. Analyzing gene differential expression induced by dietary manipulation is challenging. The effects may depend on the base diet and primary changes likely induce secondary or higher order changes that are difficult to capture by conventional univariate transcriptome analyses.
View Article and Find Full Text PDFFree Radic Biol Med
July 2015
Excess circulating iron is stored in the liver, and requires reduction of non-Tf-bound iron (NTBI) and transferrin (Tf) iron at the plasma membrane and endosomes, respectively, by ferrireductase (FR) proteins for transport across biological membranes through divalent metal transporters. Here, we report that prion protein (PrP(C)), a ubiquitously expressed glycoprotein most abundant on neuronal cells, functions as a FR partner for divalent-metal transporter-1 (DMT1) and ZIP14. Thus, absence of PrP(C) in PrP-knock-out (PrP(-/-)) mice resulted in markedly reduced liver iron stores, a deficiency that was not corrected by chronic or acute administration of iron by the oral or intraperitoneal routes.
View Article and Find Full Text PDFMouse experimental autoimmune glomerulonephritis, a model of human antiglomerular basement membrane disease, depends on both Ab and T cell responses to the Goodpasture Ag noncollagenous domain 1 of the α3-chain of type IV collagen (α3IV-NC1). The aim of our study was to further characterize the T cell-mediated immune response. Repeated immunization with mouse α3IV-NC1 caused fatal glomerulonephritis in DBA/1 mice.
View Article and Find Full Text PDFBrain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrP(C)) from its normal conformation to an aggregated, PrP-scrapie (PrP(Sc)) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrP(C) in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrP(C) is lacking.
View Article and Find Full Text PDFGlykys et al. (Reports, 7 February 2014, p. 670) conclude that, rather than ion transporters, "local impermeant anions establish the neuronal chloride concentration" and thereby determine "the magnitude and direction of GABAAR currents at individual synapses.
View Article and Find Full Text PDFAn epithelial-mesenchymal transition (EMT) is a critical process during embryonic development and the progression of epithelial tumors to metastatic cancers. Gene expression profiling has uncovered the transcription factor LIM homeobox gene 2 (Lhx2) with up-regulated expression during TGFβ-induced EMT in normal and cancerous breast epithelial cells. Loss and gain of function experiments in transgenic mouse models of breast cancer and of insulinoma in vivo and in breast cancer cells in vitro indicate that Lhx2 plays a critical role in primary tumor growth and metastasis.
View Article and Find Full Text PDFAn epithelial-mesenchymal transition (EMT) underlies malignant tumor progression and metastatic spread by enabling cancer cells to depart from the primary tumor, invade surrounding tissue, and disseminate to distant organs. EMT also enriches for cancer stem cells (CSC) and increases the capacity of cancer cells to initiate and propagate tumors upon transplantation into immune-deficient mice, a major hallmark of CSCs. However, the molecular mechanisms promoting the tumorigenicity of cancer cells undergoing an EMT and of CSCs have remained widely elusive.
View Article and Find Full Text PDFRenal proximal tubule cells from spontaneously hypertensive rats (SHR), compared with normotensive Wistar-Kyoto rats (WKY), have increased oxidative stress. The contribution of mitochondrial oxidative phosphorylation to the subsequent hypertensive phenotype remains unclear. We found that renal proximal tubule cells from SHR, relative to WKY, had significantly higher basal oxygen consumption rates, adenosine triphosphate synthesis-linked oxygen consumption rates, and maximum and reserve respiration.
View Article and Find Full Text PDFThe medullary raphé (MR) of the medulla oblongata contains chemosensitive neurons that respond to increases in arterial [CO₂], by altering firing rate, with increases being associated with serotonergic (5-hydroxytryptamine [5HT]) neurons and decreases, with GABAergic neurons. Both types of neurons contribute to increased alveolar ventilation. Decreases in intracellular pH are thought to link the rise in [CO₂] to increased ventilation.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2012
Expression of a cytosolic cyan fluorescent fusion protein of angiotensin II (ECFP/ANG II) in proximal tubules increases blood pressure in rodents. To determine cellular signaling pathways responsible for this response, we expressed ECFP/ANG II in transport-competent mouse proximal convoluted tubule cells (mPCT) from wild-type (WT) and type 1a ANG II receptor-deficient (AT(1a)-KO) mice and measured its effects on intracellular ANG II levels, surrogates of Na/H exchanger 3 (NHE3)-dependent Na(+) absorption, as well as MAP kinases and NF-κB signaling. In WT mPCT cells, ECFP/ANG II expression doubled ANG II levels, increased NHE3 expression and membrane phospho-NHE3 proteins threefold and intracellular Na(+) concentration by 65%.
View Article and Find Full Text PDFBackground: The renin-angiotensin (Ang) system controls blood pressure, in part, by regulating renal tubular sodium transport. In the kidney, activation of the angiotensin II type 1 (AT(1)) receptor increases renal sodium reabsorption, whereas the angiotensin II type 2 (AT(2)) receptor produces the opposite effect. We hypothesized that the AT(2) receptor regulates AT(1) receptor expression and function in the kidney.
View Article and Find Full Text PDFMesangial cells in diabetic mice and human kidneys with diabetic nephropathy exhibit increased type VIII collagen, a nonfibrillar protein that exists as a heterodimer composed of α1(VIII) and α2(VIII), encoded by Col8a1 and Col8a2, respectively. Because TGF-β1 promotes the development of diabetic glomerulosclerosis, we studied whether type VIII collagen modulates the effects of TGF-β1 in mesangial cells. We obtained primary cultures of mesangial cells from wild-type, doubly heterozygous (Col8a1(+/-)/Col8a2(+/-)), and double-knockout (Col8a1(-/-)/Col8a2(-/-)) mice.
View Article and Find Full Text PDFA significant amount of Ca²+ is contained in secretory mucin granules. Exchange of Ca²+ for monovalent cations drives the process of mucin decondensation and hydration after fusion of granules with the plasma membrane. Here we report direct observation of calcium secretion with a Ca²+ ion-selective electrode (ISE) in response to apical stimulation with ATP from HT29-Cl.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
May 2010
Angiotensin II (ANG II) is taken up by proximal tubule (PT) cells via AT1 (AT1a) receptor-mediated endocytosis, but the underlying cellular mechanisms remain poorly understood. The present study tested the hypothesis that the microtubule- rather than the clathrin-dependent endocytic pathway regulates AT1-mediated uptake of ANG II and ANG II-induced sodium and hydrogen exchanger-3 (NHE-3) expression in PT cells. The expression of AT1 receptors, clathrin light (LC) and heavy chain (HC) proteins, and type 1 microtubule-associated proteins (MAPs; MAP-1A and MAP-1B) in PT cells were knocked down by their respective small interfering (si) RNAs before AT1-mediated FITC-ANG II uptake and ANG II-induced NHE-3 expression were studied.
View Article and Find Full Text PDFObjective: Key features of diabetic nephropathy include the accumulation of extracellular matrix proteins. In recent studies, increased expression of type VIII collagen in the glomeruli and tubulointerstitium of diabetic kidneys has been noted. The objectives of this study were to assess whether type VIII collagen affects the development of diabetic nephropathy and to determine type VIII collagen-dependent pathways in diabetic nephropathy in the mouse model of streptozotocin (STZ)-induced diabetes.
View Article and Find Full Text PDFBackground: The dopaminergic and endothelin systems, by regulating sodium transport in the renal proximal tubule (RPT), participate in the control of blood pressure. The D(3) and ETB receptors are expressed in RPTs, and D(3) receptor function in RPTs is impaired in spontaneously hypertensive rats (SHRs). Therefore, we tested the hypothesis that D(3) receptors can regulate ETB receptors, and that D(3) receptor regulation of ETB receptors in RPTs is impaired in SHRs.
View Article and Find Full Text PDFNADPH oxidase (Nox)-dependent reactive oxygen species production is implicated in the pathogenesis of cardiovascular diseases, including hypertension. We tested the hypothesis that oxidase subunits are differentially regulated in renal proximal tubules from normotensive and spontaneously hypertensive rats. Basal Nox2 and Nox4, but not Rac1, in immortalized renal proximal tubule cells and brush border membranes were greater in hypertensive than in normotensive rats.
View Article and Find Full Text PDFBackground: Ion transport in the renal proximal tubule (RPT) is regulated by numerous hormones and humoral factors, including insulin and dopamine. Previous studies show an interaction between insulin and the D(1) receptor. Because both D(1) and D(5) receptors belong to the D(1)-like receptor subfamily, it is possible that an interaction between insulin and the D(5) dopamine receptor exists in RPT cells from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs).
View Article and Find Full Text PDFDopaminergic and endothelin systems participate in the control blood pressure by regulating sodium transport in the renal proximal tubule. Disruption of either the endothelin B receptor (ETB) or D(3) dopamine receptor gene in mice produces hypertension. To examine whether these two receptors interact we studied the Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats by selectively infusing reagents into the right kidney of anesthetized rats.
View Article and Find Full Text PDF