Intermuscular adipose tissue (IMAT) is a relatively understudied adipose depot located between muscle fibers. IMAT content increases with age and BMI and is associated with metabolic and muscle degenerative diseases; however, an understanding of the biological properties of IMAT and its interplay with the surrounding muscle fibers is severely lacking. In recent years, single-cell and nuclei RNA sequencing have provided us with cell type-specific atlases of several human tissues.
View Article and Find Full Text PDFAdipose-derived stem cells (ADSCs) play an important role in the differential capacity for excess energy storage between upper body abdominal (ABD) adipose tissue (AT) and lower body gluteofemoral (GF) AT. We cultured ADSCs from subcutaneous ABD AT and GF AT isolated from eight women with differential body fat distribution and performed single-cell RNA sequencing. Six populations of ADSCs were identified and segregated according to their anatomical origin.
View Article and Find Full Text PDFMicrophysiological systems provide the opportunity to model accelerated changes at the human tissue level in the extreme space environment. Spaceflight-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting in older adults, known as sarcopenia. These shared attributes provide a rationale for investigating molecular changes in muscle cells exposed to spaceflight that may mimic the underlying pathophysiology of sarcopenia.
View Article and Find Full Text PDFMicrogravity-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting experienced by older adults, known as sarcopenia. These shared attributes provide a rationale for investigating microgravity-induced molecular changes in human bioengineered muscle cells that may also mimic the progressive underlying pathophysiology of sarcopenia. Here, we report the results of an experiment that incorporated three-dimensional myobundles derived from muscle biopsies from young and older adults, that were integrated into an autonomous CubeLabâ"¢, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 in December 2020 as part of the NIH/NASA funded Tissue Chips in Space program.
View Article and Find Full Text PDFAutomated single-cell dispensing is incompatible with white adipose tissue (WAT) due to lipid-laden adipocytes. Single-nuclei RNA-Seq permits transcriptional profiling of all cells from WAT. Human WAT faces unique technical challenges in isolating nuclei compared to rodent tissue due to greater extra-cellular matrix content and larger lipid droplets.
View Article and Find Full Text PDFNAD is a crucial cellular factor that plays multifaceted roles in wide ranging biological processes. Low levels of NAD have been linked to numerous diseases including metabolic disorders, cardiovascular disease, neurodegeneration, and muscle wasting disorders. A novel strategy to boost NAD is to activate nicotinamide phosphoribosyltransferase (NAMPT), the putative rate-limiting step in the NAD salvage pathway.
View Article and Find Full Text PDFThe aim of this study was to investigate the effectiveness of SGLT2 inhibitors with regard to metabolic parameters and patient safety under routine ambulatory conditions. Retrospective longitudinal study of 95 patients with type 2 diabetes (diabetes duration 13.3 y; HbA1c 8.
View Article and Find Full Text PDFClassical terpenoid biosynthesis involves the cyclization of the linear prenyl pyrophosphate precursors geranyl-, farnesyl-, or geranylgeranyl pyrophosphate (GPP, FPP, GGPP) and their isomers, to produce a huge number of natural compounds. Recently, it was shown for the first time that the biosynthesis of the unique homo-sesquiterpene sodorifen by Serratia plymuthica 4Rx13 involves a methylated and cyclized intermediate as the substrate of the sodorifen synthase. To further support the proposed biosynthetic pathway, we now identified the cyclic prenyl pyrophosphate intermediate pre-sodorifen pyrophosphate (PSPP).
View Article and Find Full Text PDFBackground: Preferential accumulation of fat in the upper body (apple shape) is associated with higher risk of developing metabolic syndrome relative to lower body fat (pear shape). We previously discovered that chromatin openness partially defined the transcriptome of preadipocytes isolated from abdominal and gluteofemoral fat. However, the molecular mechanisms underlying interindividual variation in body shape are unknown.
View Article and Find Full Text PDFPharmacological strategies that boost intracellular NAD are highly coveted for their therapeutic potential. One approach is activation of nicotinamide phosphoribosyltransferase (NAMPT) to increase production of nicotinamide mononucleotide (NMN), the predominant NAD precursor in mammalian cells. A high-throughput screen for NAMPT activators and hit-to-lead campaign yielded SBI-797812, a compound that is structurally similar to active-site directed NAMPT inhibitors and blocks binding of these inhibitors to NAMPT.
View Article and Find Full Text PDFMice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VOmax) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VOmax, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice.
View Article and Find Full Text PDFObjective: Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme in the salvage pathway that produces nicotinamide adenine dinucleotide (NAD), an essential co-substrate regulating a myriad of signaling pathways. We produced a mouse that overexpressed NAMPT in skeletal muscle (NamptTg) and hypothesized that NamptTg mice would have increased oxidative capacity, endurance performance, and mitochondrial gene expression, and would be rescued from metabolic abnormalities that developed with high fat diet (HFD) feeding.
Methods: Insulin sensitivity (hyperinsulinemic-euglycemic clamp) was assessed in NamptTg and WT mice fed very high fat diet (VHFD, 60% by kcal) or chow diet (CD).
Background and purpose - The most frequent cause of arthroplasty failure is aseptic loosening-often induced by particles. Abrasion material triggers inflammatory reactions with lymphocytic infiltration and the formation of synovial-like interface membranes (SLIM) in the bone-implant interface. We analyzed CD3 quantities in SLIM depending on articulating materials and possible influences of proven material allergies on CD3 quantities.
View Article and Find Full Text PDFBased on a similar approach for quantification of antidepressants, benzodiazepines, and z-drugs, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) multi-analyte approach with simple liquid-liquid extraction was extended for fast target screening and quantification of neuroleptics in whole blood, plasma, and serum. As this method is part of a multi-analyte procedure for over 100 analytes from different drug classes and as the extracts were additionally used in the authors' laboratory for gas chromatography-mass spectrometry (GC-MS) analysis, one universal stable-isotope-labelled internal standard (SIL-IS) was used to save time and resource. The method was validated with respect to international guidelines.
View Article and Find Full Text PDFExperimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located.
View Article and Find Full Text PDFIn the present study, a liquid chromatography-mass spectrometry (LC-MS/MS) multi-analyte approach based on a simple liquid-liquid extraction was developed for fast target screening and quantification of 33 antidepressants in whole blood, plasma, and serum. The method was validated with respect to selectivity, matrix effects, recovery, process efficiency, accuracy and precision, stabilities, and limits. In addition, cross-calibration between the three biosamples was done to assess the impact of the different matrices on the calibration.
View Article and Find Full Text PDFIn the present study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) multi-analyte approach using one single work-up approach in whole blood, plasma, serum, post-mortem blood, liver tissue, gastric content, hair, and urine was developed for fast target screening and reliable identification of 130 analytes often requested in clinical and forensic toxicology. Samples (500 μL each) of whole blood, plasma, serum, post-mortem blood, tissue (homogenized 1 + 4 with water), as well as 3 g of distilled gastric contents, 1 mL of urine, or 20 mg of pulverized hair were extracted at different pH values with an diethyl ether-ethyl acetate mixture (1:1). Separation and identification were performed using LC-QTRAP with electrospray ionization in positive mode.
View Article and Find Full Text PDFFor the first time, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) multi-analyte approach based on a simple liquid-liquid extraction was developed and validated for fast target screening and quantification of benzodiazepines and Z-drugs in case of driving ability and crime responsibility in the three most important biosamples whole blood, plasma, and serum. Whole blood, plasma, and serum (500 μL each) were extracted twice at pH 7.4 and at pH 10 with ether/ethyl acetate (1:1).
View Article and Find Full Text PDFThe endoscopically based endonasal and transnasal laser surgery is a surgical procedure, which offers the ENT-specialist a safe and effective method to cure or to improve a number of diseases of the upper and middle airways. Coagulative lasers are used in contact and noncontact mode. Their light is mainly absorbed by hemoglobin but rarely by water.
View Article and Find Full Text PDFBackground: Lipoteichoic acid (LTA) represents a major virulence factor in gram-positive sepsis.
Methods And Results: In the present study we perfused isolated rat hearts for 180 minutes with highly purified LTA from Staphylococcus aureus. A progressive decline of left ventricular contractile function paralleled by the expression of myocardial tumor necrosis factor-alpha (TNF-alpha) mRNA and protein as well as the release of TNF-alpha into the perfusate was observed in LTA-perfused hearts.
We assessed whether interictal measures of hippocampal volume, hippocampal diffusion and metabolic abnormalities yield correlated or complementary information about hippocampal pathology in patients with temporal lobe epilepsy (TLE). Volumes, apparent diffusion coefficients (ADC) and ratios of N-acetyl-aspartate (NAA) to Creatine/Phosphocreatine (Cr) and Choline (Cho) were measured from each hippocampus during one magnetic resonance imaging (MRI) session in patients with TLE. Structural MRI showed unilateral hippocampal sclerosis (HS) in 13 patients and was normal in the remaining nine patients.
View Article and Find Full Text PDFRheumatoid arthritis affecting the small joints--in particular the fingers--has advantageous geometry for the transmission of near-infrared (NIR) light. Examination of the optical properties of tissues has revealed that as a result of changes to the capsule and synovial fluid there is a considerable increase in photon scattering already in the early stages of the disease--in particular around 685 nm. This suggests the appropriateness of analysing the photon density profile resulting from punctiform irradiation of the joint.
View Article and Find Full Text PDFNidogen and perlecan are large multifunctional basement membrane (BM) proteins conserved in all metazoa. Their high-affinity interaction, which is likely to contribute to BM assembly and function, is mediated by the central G2 domain in nidogen and the third immunoglobulin (IG)-like domain in perlecan, IG3. We have solved the crystal structure at 2.
View Article and Find Full Text PDFPerlecan, a major basement membrane proteoglycan, has a complex modular structure designed for the binding of many cellular and extracellular ligands. Its domain IV, which consists of a tandem of immunoglobulin-like modules (IG2-IG15), is rich in such binding sites, which have been mapped to different modules obtained by recombinant production. Heparin/sulfatide binding was restricted to IG5 and shown to depend on four arginine residues that are close in space in beta strands B and E of the C-type IG fold.
View Article and Find Full Text PDF