Publications by authors named "Hope Woods"

Cationic polymers have the unique ability to neutralize negative charge with practical applications in personal care products, such as shampoos, conditioners, contact lens solutions, and as flocculants in wastewater treatment processes. Cationic polymers are a diverse class of materials varying in structural composition, cationic charge density (CD), and molecular weight (MW). In this study, we investigated three classes of polyquaternium cationic polymers (PQ-6, PQ-10, PQ-16) of varying CD and MW to characterize their toxicity to aquatic invertebrates.

View Article and Find Full Text PDF

Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency.

View Article and Find Full Text PDF

Interactions between membrane proteins (MPs) and lipid bilayers are critical for many cellular functions. In the Rosetta molecular modeling suite, the implicit membrane energy function is based on a "slab" model, which represent the membrane as a flat bilayer. However, in nature membranes often have a curvature that is important for function and/or stability.

View Article and Find Full Text PDF

Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency.

View Article and Find Full Text PDF

In-frame deletion mutations can result in disease. The impact of these mutations on protein structure and subsequent functional changes remain understudied, partially due to the lack of comprehensive datasets including a structural readout. In addition, the recent breakthrough in structure prediction through deep learning demands an update of computational deletion mutation prediction.

View Article and Find Full Text PDF

While much work has been done in the field of canine olfaction, there has been little exploration of hyposmia or anosmia. This is partly due to difficulties in reducing confounds like training history and environmental distraction. The current study describes a novel olfaction test using spontaneous search behavior in dogs to find a hidden food treat in a three-choice task with both light-phase and dark-phase conditions.

View Article and Find Full Text PDF

Introduction: The aim of this study was to evaluate the engagement of aging dogs with a cognitively challenging and potentially frustrating task (the impossible task). Based on previous observations, we predicted that dogs showing signs of cognitive impairment in other cognitive tests and owner-completed questionnaires would show reduced engagement with the task.

Methods: In this task, dogs were shown a piece of food in a clear container that they could not open; time spent interacting with the container and the experimenter was measured.

View Article and Find Full Text PDF

Over 100 mutations in the rhodopsin gene have been linked to a spectrum of retinopathies that include retinitis pigmentosa and congenital stationary night blindness. Though most of these variants exhibit a loss of function, the molecular defects caused by these underlying mutations vary considerably. In this work, we utilize deep mutational scanning to quantitatively compare the plasma membrane expression of 123 known pathogenic rhodopsin variants in the presence and absence of the stabilizing cofactor 9-cis-retinal.

View Article and Find Full Text PDF

Missense mutations that compromise the plasma membrane expression (PME) of integral membrane proteins are the root cause of numerous genetic diseases. Differentiation of this class of mutations from those that specifically modify the activity of the folded protein has proven useful for the development and targeting of precision therapeutics. Nevertheless, it remains challenging to predict the effects of mutations on the stability and/ or expression of membrane proteins.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a rare genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial anion channel expressed in several vital organs. Absence of functional CFTR results in imbalanced osmotic equilibrium and subsequent mucus build up in the lungs-which increases the risk of infection and eventually causes death. CFTR is an ATP-binding cassette (ABC) transporter family protein composed of two transmembrane domains (TMDs), two nucleotide binding domains (NBDs), and an unstructured regulatory domain.

View Article and Find Full Text PDF

Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met.

View Article and Find Full Text PDF

Membrane protein variants with diminished conformational stability often exhibit enhanced cellular expression at reduced growth temperatures. The expression of "temperature-sensitive" variants is also typically sensitive to corrector molecules that bind and stabilize the native conformation. There are many examples of temperature-sensitive rhodopsin variants, the misfolding of which is associated with the molecular basis of retinitis pigmentosa.

View Article and Find Full Text PDF

Structure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University.

View Article and Find Full Text PDF

The study of companion (pet) dogs is an area of great translational potential, as they share a risk for many conditions that afflict humans. Among these are conditions that affect sleep, including chronic pain and cognitive dysfunction. Significant advancements have occurred in the ability to study sleep in dogs, including development of non-invasive polysomnography; however, basic understanding of dog sleep patterns remains poorly characterized.

View Article and Find Full Text PDF

The function of the voltage-gated KCNQ1 potassium channel is regulated by co-assembly with KCNE auxiliary subunits. KCNQ1-KCNE1 channels generate the slow delayed rectifier current, I, which contributes to the repolarization phase of the cardiac action potential. A three amino acid motif (F57-T58-L59, FTL) in KCNE1 is essential for slow activation of KCNQ1-KCNE1 channels.

View Article and Find Full Text PDF

Membrane proteins must balance the sequence constraints associated with folding and function against the hydrophobicity required for solvation within the bilayer. We recently found the expression and maturation of rhodopsin are limited by the hydrophobicity of its seventh transmembrane domain (TM7), which contains polar residues that are essential for function. On the basis of these observations, we hypothesized that rhodopsin's expression should be less tolerant of mutations in TM7 relative to those within hydrophobic TM domains.

View Article and Find Full Text PDF

The voltage-gated potassium channel KCNQ1 (KV7.1) assembles with the KCNE1 accessory protein to generate the slow delayed rectifier current, IKS, which is critical for membrane repolarization as part of the cardiac action potential. Loss-of-function (LOF) mutations in KCNQ1 are the most common cause of congenital long QT syndrome (LQTS), type 1 LQTS, an inherited genetic predisposition to cardiac arrhythmia and sudden cardiac death.

View Article and Find Full Text PDF