Publications by authors named "Hope D Welhaven"

Background: The Intensive Diet and Exercise for Arthritis (IDEA) trial was a randomized trial conducted to evaluate the effects of diet and exercise on osteoarthritis (OA), the most prevalent form of arthritis. Various risk factors, including obesity and sex, contribute to OA's debilitating nature. While diet and exercise are known to improve OA symptoms, cellular and molecular mechanisms underlying these interventions, as well as effects of participant sex, remain elusive.

View Article and Find Full Text PDF

The mechanism by which chondrocytes respond to reduced mechanical loading environments and the subsequent risk of developing osteoarthritis remains unclear. This is of particular concern for astronauts. In space the reduced joint loading forces during prolonged microgravity (10 g) exposure could lead to osteoarthritis (OA), compromising quality of life post-spaceflight.

View Article and Find Full Text PDF

Objective: To provide a comprehensive and insightful summary of studies on molecular biomarkers at the gene, protein, and metabolite levels across different sample types and joints affected by osteoarthritis (OA).

Methods: A literature search using the PubMed database for publications on OA biomarkers published between April 1, 2023 and April 30, 2024 was performed. Publications were then screened, examined at length, and summarized in a narrative review.

View Article and Find Full Text PDF

The mechanism by which chondrocytes respond to reduced mechanical loading environments and the subsequent risk of developing osteoarthritis remains unclear. This is of particular concern for astronauts. In space the reduced joint loading forces during prolonged microgravity (10 ) exposure could lead to osteoarthritis (OA), compromising quality of life post-spaceflight.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, metabolite extracts from healthy (n = 11) and end-stage osteoarthritic cartilage (n = 35) were analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Specific metabolites and metabolic pathways, including lipid and amino acid pathways, were differentially regulated in osteoarthritis-derived and healthy cartilage.

View Article and Find Full Text PDF

Objective: The Intensive Diet and Exercise for Arthritis (IDEA) trial was conducted to evaluate the effects of diet and exercise on osteoarthritis (OA), the most prevalent form of arthritis. Various risk factors, such as obesity and sex, contribute to the debilitating nature of OA. While diet and exercise are known to improve OA symptoms, cellular and molecular mechanisms underlying these interventions, as well as effects of participant sex, remain elusive.

View Article and Find Full Text PDF

Osteoarthritis is the most common chronic joint disease, characterized by the abnormal remodeling of joint tissues including articular cartilage and subchondral bone. However, there are currently no therapeutic drug targets to slow the progression of disease because disease pathogenesis is largely unknown. Thus, the goals of this study were to identify metabolic differences between articular cartilage and subchondral bone, compare the metabolic shifts in osteoarthritic grade III and IV tissues, and spatially map metabolic shifts across regions of osteoarthritic hip joints.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, healthy and end-stage osteoarthritic cartilage were compared metabolically to uncover disease-associated profiles, classify OA-specific metabolic endotypes, and identify targets for intervention for the diverse populations of individuals affected by OA.

Design: Femoral head cartilage (n=35) from osteoarthritis patients were collected post-total joint arthroplasty.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis varies between individuals, and the study aimed to explore how sex and specific knee injuries influence cellular processes and repair mechanisms related to post-traumatic osteoarthritis (PTOA).
  • Researchers examined synovial fluid (SF) from 33 knee surgery patients and analyzed metabolites with blood samples, focusing on differences linked to sex and types of knee injuries (ligament, meniscal, or both).
  • Results indicated distinct metabolic changes based on injury type and sex, with specific metabolites like cervonyl carnitine differing in concentration, highlighting the need for further research on how these factors impact PTOA development in men and women.
View Article and Find Full Text PDF

The gut microbiome impacts bone mass, which implies a disruption to bone homeostasis. However, it is not yet clear how the gut microbiome affects the regulation of bone mass and bone quality. We hypothesized that germ-free (GF) mice have increased bone mass and decreased bone toughness compared with conventionally housed mice.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous fluid-filled cysts that lead to progressive loss of functional nephrons. Currently, there is an unmet need for diagnostic and prognostic indicators of early stages of the disease. Metabolites were extracted from the urine of patients with early-stage ADPKD ( = 48 study participants) and age- and sex-matched normal controls ( = 47) and analyzed by liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

Background: Post-traumatic osteoarthritis (PTOA) is caused by knee injuries like anterior cruciate ligament (ACL) injuries. Often, ACL injuries are accompanied by damage to other tissues and structures within the knee including the meniscus. Both are known to cause PTOA but underlying cellular mechanisms driving disease remain unknown.

View Article and Find Full Text PDF

Metabolism has long been recognized as a critical physiological process necessary to maintain homeostasis in all types of cells including the chondrocytes of articular cartilage. Alterations in metabolism in disease and metabolic adaptation to physiological stimuli such as mechanical loading are increasingly recognized as important for understanding musculoskeletal systems such as synovial joints. Metabolomics is an emerging technique that allows quantitative measurement of thousands of small molecule metabolites that serve as both products and reactants to myriad reactions of cellular biochemistry.

View Article and Find Full Text PDF

Cortical bone quality, which is sexually dimorphic, depends on bone turnover and therefore on the activities of remodeling bone cells. However, sex differences in cortical bone metabolism are not yet defined. Adding to the uncertainty about cortical bone metabolism, the metabolomes of whole bone, isolated cortical bone without marrow, and bone marrow have not been compared.

View Article and Find Full Text PDF

Mechanotransduction is a biological phenomenon where mechanical stimuli are converted to biochemical responses. A model system for studying mechanotransduction are the chondrocytes of articular cartilage. Breakdown of this tissue results in decreased mobility, increased pain, and reduced quality of life.

View Article and Find Full Text PDF