Publications by authors named "Hoorelbeke B"

Objectives: The 2022 mpox epidemic reached a peak in Belgium and the rest of Europe in July 2022, after which it unexpectedly subsided. This study investigates epidemiological, behavioral, and immunological factors behind the waning of the epidemic in Belgium.

Methods: We investigated temporal evolutions in the characteristics and behavior of mpox patients using national surveillance data and data from a prospective registry of mpox patients in the Institute of Tropical Medicine (Antwerp).

View Article and Find Full Text PDF

Since 2022, European countries have been facing an outbreak of mainly cutaneous diphtheria caused by toxigenic among asylum seekers. In Belgium, between 1 March and 31 December 2022, 25 cases of toxigenic infection were confirmed among asylum seekers, mostly among young males from Afghanistan. Multi-locus sequence typing showed that most isolates belonged to sequence types 574 or 377, similar to the majority of cases in other European countries.

View Article and Find Full Text PDF

In vivo leukocyte recruitment is not fully understood and may result from interactions of chemokines with glycosaminoglycans/GAGs. We previously showed that chlorite-oxidized oxyamylose/COAM binds the neutrophil chemokine GCP-2/CXCL6. Here, mouse chemokine binding by COAM was studied systematically and binding affinities of chemokines to COAM versus GAGs were compared.

View Article and Find Full Text PDF

Pradimicins (PRM) are a unique class of nonpeptidic carbohydrate-binding agents that inhibit HIV infection by efficiently binding to the HIV-1 envelope gp120 glycans in the obligatory presence of Ca(2+). Surface plasmon resonance (SPR) data revealed that addition of EDTA dose-dependently results in lower binding signals of PRM-A to immobilized gp120. Pradimicin derivatives that lack the free carboxylic acid group on the C-18 position failed to bind gp120 and were devoid of significant antiviral activity.

View Article and Find Full Text PDF

Griffithsin (Grft) is a protein lectin derived from red algae that tightly binds the HIV envelope protein gp120 and effectively inhibits virus infection. This inhibition is due to the binding by Grft of high-mannose saccharides on the surface of gp120. Grft has been shown to be a tight dimer, but the role of the dimer in Grft's anti-HIV function has not been fully explored.

View Article and Find Full Text PDF

Background: The glycan-targeting C-type DC-SIGN lectin receptor is implicated in the transmission of the human immunodeficiency virus (HIV) by binding the virus and transferring the captured HIV-1 to CD4(+) T lymphocytes. Carbohydrate binding agents (CBAs) have been reported to block HIV-1 infection. We have now investigated the potent mannose-specific anti-HIV CBA griffithsin (GRFT) on its ability to inhibit the capture of HIV-1 to DC-SIGN, its DC-SIGN-directed transmission to CD4(+) T-lymphocytes and the role of the three carbohydrate-binding sites (CBS) of GRFT in these processes.

View Article and Find Full Text PDF

Lantibiotics are peptides, produced by bacteria, that contain the noncanonical amino acid lanthionine and many of them exhibit antibacterial activities. The labyrinthopeptin A1 (LabyA1) is a prototype peptide of a novel class of carbacyclic lantibiotics. Here, we extensively evaluated its broad-spectrum activity against HIV and HSV in vitro, studied its mechanism of action and evaluated potential microbicidal applications.

View Article and Find Full Text PDF

The native HIV-1 Env complex consists of a gp120/gp41 trimer, but surface plasmon resonance (SPR)-directed binding studies for gp120-binding agents were almost exclusively performed on monomeric gp120. SPR-directed binding kinetics of monomeric gp120 and trimeric gp140 were investigated for a broad variety of envelope (Env)-binding agents. Similar kinetics for carbohydrate-binding agents (CBAs), the antibody 2G12 and sCD4 were observed, irrespective of the oligomeric state of gp120 that either contain the native mixture of complex and high-mannose N-glycans or that contain exclusively oligomannose N-glycans.

View Article and Find Full Text PDF

Feglymycin (FGM), a natural Streptomyces-derived 13mer peptide, consistently inhibits HIV replication in the lower μM range. FGM also inhibits HIV cell-to-cell transfer between HIV-infected T cells and uninfected CD4(+) T cells and the DC-SIGN-mediated viral transfer to CD4(+) T cells. FGM potently interacts with gp120 (X4 and R5) as determined by SPR analysis and shown to act as a gp120/CD4 binding inhibitor.

View Article and Find Full Text PDF

This communication reports on the synthesis and biophysical, biological and SAR studies of a small library of new anti-HIV aptamers based on the tetra-end-linked G-quadruplex structure. The new aptamers showed EC(50) values against HIV-1 in the range of 0.04-0.

View Article and Find Full Text PDF

Griffithsin (GRFT) is a lectin that has been shown to inhibit HIV infection by binding to high mannose glycan structures on the surface of gp120, and it is among the most potent HIV entry inhibitors reported so far. However, important biochemical details on the antiviral mechanism of GRFT action remain unexplored. In order to understand the role of the three individual carbohydrate-binding sites (CBS) in GRFT, mutations were made at each site (D30A, D70A, and D112A), and the resulting mutants were investigated.

View Article and Find Full Text PDF

On the basis of the interesting inhibitory properties that lectins show against HIV-replication through their interaction with glycoprotein 120 (gp120), we here describe the design, synthesis, and anti-HIV evaluation of three series of 1,3,5-triazine derivatives (monomers, dimers, and trimers) functionalized with aromatic amino acids meant to mimic interactions that lectins establish with gp120. While monomers were inactive against HIV replication, dimers showed limited anti-HIV activity that is, however, considerably more significant in the trimers series, with EC(50) values in the lower μM range. These findings most likely reflect the requirement of multivalency of the 1,3,5-triazine derivatives to display anti-HIV activity, as lectins do.

View Article and Find Full Text PDF

We report here a facile preparation of highly water-soluble derivatives C(70)[p-C(6)H(4)(CH(2))(n)COOH](8) (n = 2, 3) starting from readily available chlorinated [70]fullerene precursors C(70)Cl(8) and C(70)Cl(10). The synthesized fullerene derivatives showed pronounced antiviral activity in vitro, particularly against human immunodeficiency virus (HIV) and influenza A virus (subtypes H1N1 and H3N2).

View Article and Find Full Text PDF

Background: In a recent report, the carbohydrate-binding specificities of the plant lectins Galanthus nivalis (GNA) and the closely related lectin from Zea mays (GNAmaize) were determined by glycan array analysis and indicated that GNAmaize recognizes complex-type N-glycans whereas GNA has specificity towards high-mannose-type glycans. Both lectins are tetrameric proteins sharing 64% sequence similarity.

Results: GNAmaize appeared to be ~20- to 100-fold less inhibitory than GNA against HIV infection, syncytia formation between persistently HIV-1-infected HuT-78 cells and uninfected CD4+ T-lymphocyte SupT1 cells, HIV-1 capture by DC-SIGN and subsequent transmission of DC-SIGN-captured virions to uninfected CD4+ T-lymphocyte cells.

View Article and Find Full Text PDF

A series of d((5')TGGGAG(3')) sequences, 5'-conjugated with a variety of aromatic groups through phosphodiester linkages, were synthesized, showing CD spectra diagnostic of parallel-stranded, tetramolecular G-quadruplex structures. When tested for anti-HIV-1 and HIV-2 activity, potent inhibition of HIV-1 infection in CEM cell cultures was found, associated with high selectivity index values. Surface Plasmon Resonance assays revealed specific binding to HIV-1 gp120 and gp41.

View Article and Find Full Text PDF

The biophysical and biological properties of unprecedented anti-HIV aptamers are presented. The most active aptamer (1L) shows a significant affinity to the HIV protein gp120.

View Article and Find Full Text PDF

The lectin actinohivin (AH) is a monomeric carbohydrate-binding agent (CBA) with three carbohydrate-binding sites. AH strongly interacts with gp120 derived from different X4 and R5 human immunodeficiency virus (HIV) strains, simian immunodeficiency virus (SIV) gp130, and HIV type 1 (HIV-1) gp41 with affinity constants (KD) in the lower nM range. The gp120 and gp41 binding of AH is selectively reversed by (alpha1,2-mannose)3 oligosaccharide but not by alpha1,3/alpha1,6-mannose- or GlcNAc-based oligosaccharides.

View Article and Find Full Text PDF

Recently, we described llama antibody fragments (VHH) that can neutralize human immunodeficiency virus, type 1 (HIV-1). These VHH were obtained after selective elution of phages carrying an immune library raised against gp120 of HIV-1 subtype B/C CN54 with soluble CD4. We describe here a new, family-specific approach to obtain the largest possible diversity of related VHH that compete with soluble CD4 for binding to the HIV-1 envelope glycoprotein.

View Article and Find Full Text PDF

Pradimicin S (PRM-S) is a highly water-soluble, negatively charged derivative of the antibiotic pradimicin A (PRM-A) in which the terminal xylose moiety has been replaced by 3-sulfated glucose. PRM-S does not prevent human immunodeficiency virus (HIV) adsorption on CD4(+) T cells, but it blocks virus entry into its target cells. It inhibits a wide variety of HIV-1 laboratory strains and clinical isolates, HIV-2, and simian immunodeficiency virus (SIV) in various cell culture systems (50% and 90% effective concentrations [EC(50)s and EC(90)s] invariably in the lower micromolar range).

View Article and Find Full Text PDF

Members of the Camelidae family produce immunoglobulins devoid of light chains. We have characterized variable domains of these heavy chain antibodies, the VHH, from llamas immunized with human immunodeficiency virus type 1 (HIV-1) envelope protein gp120 in order to identify VHH that can inhibit HIV-1 infection. To increase the chances of isolating neutralizing VHH, we employed a functional selection approach, involving panning of phage libraries expressing the VHH repertoire on recombinant gp120, followed by a competitive elution with soluble CD4.

View Article and Find Full Text PDF

A total of 22 individuals participated in this benchmark study to characterize the thermodynamics of small-molecule inhibitor-enzyme interactions using Biacore instruments. Participants were provided with reagents (the enzyme carbonic anhydrase II, which was immobilized onto the sensor surface, and four sulfonamide-based inhibitors) and were instructed to collect response data from 6 to 36 degrees C. van't Hoff enthalpies and entropies were calculated from the temperature dependence of the binding constants.

View Article and Find Full Text PDF

To cope with iron deficiency fluorescent pseudomonads produce pyoverdines which are complex peptidic siderophores that very efficiently scavenge iron. In addition to pyoverdine some species also produce other siderophores. Recently, it was shown that Pseudomonas fluorescens ATCC 17400 produces the siderophore quinolobactin, an 8-hydroxy-4-methoxy-2-quinoline carboxylic acid (Mossialos, D.

View Article and Find Full Text PDF

A novel gel-free proteomic technology was used to identify more than 800 proteins from 50 million Escherichia coli K12 cells in a single analysis. A peptide mixture is first obtained from a total unfractionated cell lysate, and only the methionine-containing peptides are isolated and identified by mass spectrometry and database searching. The sorting procedure is based on the concept of diagonal chromatography but adapted for highly complex mixtures.

View Article and Find Full Text PDF

A crucial event in the process of apoptosis is caspase-dependent generation of truncated Bid (tBid), inducing release of cytochrome c. In an in vitro reconstitution system we combined purified recombinant tBid with isolated liver mitochondria and identified the released proteins using a proteomic matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) approach. In order to meet physiological conditions, the concentration of tBid was chosen such that it was unable to induce cytochrome c release in mitochondria derived from liver-specific Bcl-2-transgenic mice.

View Article and Find Full Text PDF

Chlamydia trachomatis represents a group of human pathogenic obligate intracellular and gram-negative bacteria. The genome of C. trachomatis D comprises 894 open reading frames (ORFs).

View Article and Find Full Text PDF