Aim: Perturbed calcium homeostasis limits life expectancy in familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC). This rare disease occurs by loss-of-function mutations in CLDN16 or CLDN19 genes, causing impaired paracellular reabsorption of divalent cations along the cortical thick ascending limb (cTAL). Only partial compensation takes place in the ensuing late distal convoluted tubule, connecting tubule, and collecting duct, where the luminal transient receptor potential channel V5 (TRPV5), as well as basolateral plasma membrane calcium ATPase (PMCA) and sodium-potassium exchanger (NCX1) mediate transcellular Ca reabsorption.
View Article and Find Full Text PDFThe tight junction proteins claudin-10 and -16 are crucial for the paracellular reabsorption of cations along the thick ascending limb of Henle's loop in the kidney. In patients, mutations in CLDN16 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis, while mutations in CLDN10 impair kidney function. Mice lacking claudin-16 display magnesium and calcium wasting, whereas absence of claudin-10 results in hypermagnesemia and interstitial nephrocalcinosis.
View Article and Find Full Text PDFThe thick ascending limb (TAL) of Henle's loop drives paracellular Na, Ca, and Mg reabsorption via the tight junction (TJ). The TJ is composed of claudins that consist of four transmembrane segments, two extracellular segments (ECS1 and -2), and one intracellular loop. Claudins interact within the same (cis) and opposing (trans) plasma membranes.
View Article and Find Full Text PDF