Publications by authors named "Hoon Y Jeong"

The sorption of Eu(III) by Na-substituted bentonite (Na-bentonite) was investigated as a function of pH and NaNO concentration ([NaNO]). At pH < ∼7.5, Eu(III) sorption decreased with the increasing [NaNO], whereas at pH > ∼7.

View Article and Find Full Text PDF

The shear-rolling process is a promising directed self-assembly method that can produce high-quality sub-10 nm block copolymer line-space patterns cost-effectively and straightforwardly over a large area. This study presents a high temperature (280 °C) and rapid (~0.1 s) shear-rolling process that can achieve a high degree of orientation in a single process while effectively preventing film delamination, that can be applied to large-area continuous processes.

View Article and Find Full Text PDF

Exceptional points (EPs) are degenerate singularities in a non-Hermitian system that can be induced by controlling the interaction between resonant photonic modes. EPs can enable unusual optical phenomena and significantly enhance the optical sensitivity under small perturbations. However, most studies thus far have been limited to static photonic structures.

View Article and Find Full Text PDF

Three-dimensional (3D) printing enables the fabrication of complex, highly customizable structures, which are difficult to fabricate using conventional fabrication methods. Recently, the concept of four-dimensional (4D) printing has emerged, which adds active and responsive functions to 3D-printed structures. Deployable or adaptive structures with desired structural and functional changes can be fabricated using 4D printing; thus, 4D printing can be applied to actuators, soft robots, sensors, medical devices, and active and reconfigurable photonic devices.

View Article and Find Full Text PDF

Spoof surface plasmons in corrugated metal surfaces allow tight field confinement and guiding even at low frequencies and are promising for compact microwave photonic devices. Here, we use metal-ink printing on flexible substrates to construct compact spoof plasmon resonators. We clearly observe multipole resonances in the microwave frequencies and demonstrate that they are still maintained even under significant bending.

View Article and Find Full Text PDF

We investigated the feasibility of using FeS-coated alumina and silica for permeable reactive barrier (PRB) applications. By both coated materials, Cr(VI) was reduced to Cr(III), which was immobilized via surface complexation/precipitation at acidic pH, and bulk precipitation at neutral to basic pH. Both pH and surface coating density (the amount of FeS deposits per unit surface area of a supporting matrix) controlled Cr(VI) reduction capacity and [Cr,Fe](OH) composition.

View Article and Find Full Text PDF

A partially Co-exchanged zeolite X was thermally treated to simulate the effect of decay heat on the leachability of extraframework Co. To have a mechanistic insight into thermal effect, X-ray diffraction, scanning electron microscopy, Al magic angle spinning nuclear magnetic resonance spectroscopy, and Co K-edge X-ray absorption spectroscopy were employed with leaching tests. Although thermal treatment at ≤ 600 °C did not lead to the collapse of zeolite framework, it removed HO molecules from the coordination shell of extraframework Co, which in turn changed its coordination structure in a way to strengthen the interaction between Co and the lattice oxygens.

View Article and Find Full Text PDF

Four-dimensional (4D) printing can add active and responsive functions to three-dimensional (3D) printed objects in response to various external stimuli. Light, among others, has a unique advantage of remotely controlling structural changes to obtain predesigned shapes. In this study, we demonstrate multicolor 4D printing of shape-memory polymers (SMPs).

View Article and Find Full Text PDF

Changes in the saturation degree of aquifers control the geochemical reactions of redox-sensitive elements such as iron (Fe), sulfur (S), and arsenic (As). In this study, the effects of redox conditions and the presence of Fe and S on the behavior of As in a soil environment were investigated by observation in a batch experimental system. Arsenic was stable on Fe(III) solid surface in an oxidizing environment but was easily released into the aqueous phase following the reductive dissolution of Fe during an anoxic period.

View Article and Find Full Text PDF

Selection of proper surfactants is critical for applying surfactant-enhanced remediation (SER) to sites contaminated with nonaqueous phase liquids (NAPLs). Here, ethoxylated nonionic surfactants (Tween 20, Tween 40, Tween 80, and Triton X-100) were evaluated for their applicability to remedy chlorinated organic phases, chloroform (CF), trichloroethylene (TCE), and tetrachloroethylene (PCE), on the basis of solubilization capacity, partitioning behavior, and macroemulsion formation. The most hydrophilic CF was not relevant for SER applications since excessive surfactant partitioning into CF rendered only few of them available for its solubilization.

View Article and Find Full Text PDF
Article Synopsis
  • 3D printing is typically used for creating static components, but this research introduces the concept of bistability, allowing for more dynamic and reconfigurable structures.
  • The study showcases the development of twisting and rotational bistable structures that can be 3D printed without needing additional assembly, utilizing special joints.
  • Bistability enables efficient motion control and can be enhanced with shape memory polymers, offering the ability to adjust key characteristics after printing, thus expanding their applications in 3D-printed parts.
View Article and Find Full Text PDF

This study investigates the feasibility of mackinawite (FeS)-coated sand in permeable reactive barrier applications to treat Cr(VI)-contaminated groundwater under anoxic conditions. For this, Cr(VI) sorption experiments were conducted using both coated and uncoated sands. Solution-phase Cr speciation and Cr K-edge X-ray absorption near-edge structure (XANES) analysis indicated the complete reduction of Cr(VI) to Cr(III) by coated sand.

View Article and Find Full Text PDF

During X-ray absorption spectroscopy (XAS) measurements of arsenic (As), beam-induced redox transformation is often observed. In this study, the As species immobilized by poorly crystallized mackinawite (FeS) was assessed for the susceptibility to beam-induced redox reactions as a function of sample properties including the redox state of FeS and the solid-phase As speciation. The beam-induced oxidation of reduced As species was found to be mediated by the atmospheric O and the oxidation products of FeS [e.

View Article and Find Full Text PDF

High-index dielectric structures have recently been studied intensively for Mie resonances at optical frequencies. These dielectric structures can enable extreme light manipulation, similar to that which has been achieved with plasmonic nanostructures. In the microwave region, dielectric resonators and metamaterials can be fabricated directly using 3D printing, which is advantageous for fabricating structurally complicated 3D geometries.

View Article and Find Full Text PDF

We propose and analyze a scheme for active switching and spectral tuning of mid-infrared Fano resonances. We consider dielectric resonators made of semiconductor cylinder arrays and block pairs, and theoretically investigate their optical response change due to carrier generation. Owing to sharp optical resonances in these structures and large dielectric constant variations with carrier densities, the significant spectral tuning of Fano resonances is achievable.

View Article and Find Full Text PDF

Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina-water interface, whereas it may bind to hematite surface sites.

View Article and Find Full Text PDF

The pH impact on reductive dechlorination of cis-dichloroethylene (cis-DCE) was investigated using in situ Fe precipitates formed under iron-rich sulfate-reducing conditions. The dechlorination rate of cis-DCE increased with pH, which was attributed to changes in the solid-phase Fe concentration, the composition of Fe minerals, and the surface speciation of Fe minerals. With increasing pH, larger quantities of Fe minerals, having much greater reactivity than dissolved Fe(II), were produced.

View Article and Find Full Text PDF

Abiotic degradation of cis-dichloroethylene (cis-DCE) and vinyl chloride (VC) was investigated using Fe hydroxides obtained by hydrolyzing Fe(II) salts over a pH range of 7.7-8.0.

View Article and Find Full Text PDF

Iron sulfide (FeS) has been demonstrated to have a high removal capacity for arsenic (As) in reducing environments. However, FeS may be present as a coating, rather than in nanoparticulate form, in both natural and engineered systems. Frequently, the removal capacity of coatings may be different than that of nanoparticulates in batch systems.

View Article and Find Full Text PDF

This study investigated reductive dechlorination of cis-dichloroethylene (cis-DCE) by the reduced Fe phases obtained from in situ precipitation, which involved mixing of Fe(II), Fe(III), and S(-II) solutions. A range of redox conditions were simulated by varying the ratio of initial Fe(II) concentration ([Fe(II)](o)) to initial Fe(III) concentration ([Fe(III)](o)) for iron-reducing conditions (IRC) and the ratio of [Fe(II)](o) to initial sulfide concentration ([S(-II)](o)) for sulfate-reducing conditions (SRC). Significant dechlorination of cis-DCE occurred under highly reducing IRC and iron-rich SRC, suggesting that Fe (oxyhydr)oxides including green rusts are highly reactive with cis-DCE but that Fe sulfide as mackinawite (FeS) is nonreactive.

View Article and Find Full Text PDF

This study investigated the solid-phase Hg formed by reacting 0.005 or 0.01 M Hg(II) with 10 g/L mackinawite (FeS) as a function of pH in 0.

View Article and Find Full Text PDF

In this study we investigated the speciation of the solid-phase As formed by reacting 2 x 10(-4) M As(III) with 1.0 g/L mackinawite and the potential for these sorbed species to be mobilized (released into the aqueous phase) upon exposure to atmospheric oxygen at pH 4.9, 7.

View Article and Find Full Text PDF

Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/nmm) with unit cell parameters a = b = 3.67 Å and c = 5.

View Article and Find Full Text PDF

Because of frequent co-occurrence of metals with chlorinated organic pollutants, Fe(II), Co(II), Ni(II), and Hg(II) were evaluated for their impact on the dechlorination pathways of PCE and TCE and the subsequent transformation of the initial dechlorination products by FeS. PCE transforms to acetylene via beta-elimination, TCE via hydrogenolysis, and 1,1-DCE via alpha-elimination, while TCE transforms to acetylene via beta-elimination and cis-DCE and 1,1-DCE via hydrogenolysis. Acetylene subsequently transforms in FeS batches, but little transformation of cis-DCE and 1,1-DCE was observed.

View Article and Find Full Text PDF

Iron sulfides are known to be efficient scavengers of heavy metals. In this study, Hg(II) sorption was investigated using synthetic nanocrystalline mackinawite (a disordered phase) as a function of initial Hg(II) concentration [Hg(II)]0, initial FeS concentration [FeS]0, total chloride concentration CIT, and pH. Hg(II) sorption mechanisms are dependent on relative concentrations of [Hg(II)]0 and [FeS]0 (the molar ratio of [Hg(II)0/[FeS]0).

View Article and Find Full Text PDF