Publications by authors named "Hoon Shim"

Objective: To evaluate the combination of autologous fat transplantation and silicone gel prosthesis implantation for breast augmentation surgery.

Methods: With "autologous fat", "silicone prosthesis", "combined with", "combination", "breast augmentation" and "clinical effect" as search keywords, a thorough literature search was performed throughout the Chinese databases (CBMdisc, Wanfang, CNKI and Chongqing VIP) and English databases (PUBMED and EMBASE) and after cross-referencing and reading, literature conforming with the inclusion and exclusion criteria were analyzed and significant data related to autologous fat transplantation combined with silicone prosthesis in breast augmentation surgery was collected and meta-analyzed.

Results: 21 full-text articles were included into the meta-analysis study: Autologous fat transplantation combined with silicone gel prosthesis implantation not only enhancedthe long-term postoperative breast shape recovery, but also fundamentally managed the underlying drawbacks of using autologous fat graft transplantation or prosthesis alone, decreasing the rate of procedure related morbidity and complications.

View Article and Find Full Text PDF

Background: Dynactin p150, the largest subunit of the dynactin macromolecular complex, binds to both microtubules and tubulin dimers through the N-terminal cytoskeleton-associated protein and glycine-rich (CAP-Gly) and basic domains, and serves as an anti-catastrophe factor in stabilizing microtubules in neurons. P150 also initiates dynein-mediated axonal retrograde transport. Multiple missense mutations at the CAP-Gly domain of p150 are associated with motor neuron diseases and other neurodegenerative disorders, further supporting the importance of microtubule domains (MTBDs) in p150 functions.

View Article and Find Full Text PDF

Background: This study aimed to investigate patient perceptions of and satisfaction with surgical outcomes of microtia reconstruction using autologous cartilage. It also analyzes associations between patient background characteristics and their evaluation.

Methods: Lobule-type microtia patients who had received first-stage surgery were interviewed using a questionnaire, which included assessment of nine auricle substructures, superior and inferior parts and overall impression.

View Article and Find Full Text PDF

We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems.

View Article and Find Full Text PDF

The substitution of Proline with Serine at residue 56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) has been linked to an atypical autosomal dominant form of familial amyotrophic lateral sclerosis 8 (ALS8). To investigate the pathogenic mechanism of P56S VAPB in ALS, we generated transgenic (Tg) mice that heterologously express human wild-type (WT) and P56S VAPB under the control of a pan-neuronal promoter Thy1.2.

View Article and Find Full Text PDF

α-Synuclein (α-syn) plays a prominent role in the degeneration of midbrain dopaminergic (mDA) neurons in Parkinson's disease (PD). However, only a few studies on α-syn have been performed in the mDA neurons in vivo, which may be attributed to a lack of α-syn transgenic mice that develop PD-like severe degeneration of mDA neurons. To gain mechanistic insights into the α-syn-induced mDA neurodegeneration, we generated a new line of tetracycline-regulated inducible transgenic mice that overexpressed the PD-related α-syn A53T missense mutation in the mDA neurons.

View Article and Find Full Text PDF

Two members of the R7 subfamily of regulators of G protein signaling, RGS7 and RGS11, are present at dendritic tips of retinal depolarizing bipolar cells (DBCs). Their involvement in the mGluR6/Gα(o)/TRPM1 pathway that mediates DBC light responses has been implicated. However, previous genetic studies employed an RGS7 mutant mouse that is hypomorphic, and hence the exact role of RGS7 in DBCs remains unclear.

View Article and Find Full Text PDF

In the hippocampus, activation of nicotinic receptors that include α4 and β2 subunits (α4β2*) facilitates memory formation. α4β2* receptors may also play a role in nicotine withdrawal, and their loss may contribute to cognitive decline in aging and Alzheimer's disease (AD). However, little is known about their cellular function in the hippocampus.

View Article and Find Full Text PDF

Mast cell responses can be altered by cytokines, including those secreted by Th2 and regulatory T cells (Treg). Given the important role of mast cells in Th2-mediated inflammation and recent demonstrations of Treg-mast cell interactions, we examined the ability of IL-4 and TGF-beta1 to regulate mast cell homeostasis. Using in vitro and in vivo studies of mouse and human mast cells, we demonstrate that IL-4 suppresses TGF-beta1 receptor expression and signaling, and vice versa.

View Article and Find Full Text PDF

Mutations in alpha-synuclein and Leucine-rich repeat kinase 2 (LRRK2) are linked to autosomal dominant forms of Parkinson's disease (PD). However, little is known about any potential pathophysiological interplay between these two PD-related genes. Here we show in transgenic mice that although overexpression of LRRK2 alone did not cause neurodegeneration, the presence of excess LRRK2 greatly accelerated the progression of neuropathological abnormalities developed in PD-related A53T alpha-synuclein transgenic mice.

View Article and Find Full Text PDF

Purpose: In the Gbeta5(-/-) mouse, the electroretinogram (ERG) b-wave is absent, and the R7 subfamily of regulators of G protein signaling (RGS), which includes RGS6, -7, -9, and -11, is downregulated. Mutant mouse strains deficient in RGS7 or -11 were characterized, and the SG711 strain which is deficient in both proteins was examined, to learn whether the loss of some of these RGS proteins causes the absence of the ERG b-wave.

Methods: Antibodies to RGS7 and -11 were generated to determine their expression levels and localizations in retinas with various genetic backgrounds by Western blot analysis and immunohistochemistry, respectively.

View Article and Find Full Text PDF

Dysfunction of alsin, particularly its putative Rab5 guanine-nucleotide-exchange factor activity, has been linked to one form of juvenile onset recessive familial amyotrophic lateral sclerosis (ALS2). Multiple lines of alsin knockout (ALS2(-/-)) mice have been generated to model this disease. However, it remains elusive whether the Rab5-dependent endocytosis is altered in ALS2(-/-) neurons.

View Article and Find Full Text PDF

Autosomal recessive mutations in the ALS2 gene have been linked to juvenile-onset amyotrophic lateral sclerosis (ALS2), primary lateral sclerosis and juvenile-onset ascending hereditary spastic paraplegia. Except for two recently identified missense mutations, all other mutations in the ALS2 gene lead to a premature stop codon and likely abrogate all the potential functions of alsin, the protein encoded by the ALS2 gene. To study the pathologic mechanisms of ALS2 deficiency, four different lines of ALS2 knockout (ALS2(-/-)) mice have been generated by independent groups.

View Article and Find Full Text PDF

Parkinson's disease (PD), a progressive neurodegenerative disease characterized by bradykinesia, rigidity, and resting tremor, is the most common neurodegenerative movement disorder. Although the majority of PD cases are sporadic, some are inherited, including those caused by leucine-rich repeat kinase 2 (LRRK2) mutations. The substitution of serine for glycine at position 2019 (G2019S) in the kinase domain of LRRK2 represents the most prevalent genetic mutation in both familial and apparently sporadic cases of PD.

View Article and Find Full Text PDF

The G59S missense mutation at the conserved microtubule-binding domain of p150(glued), a major component of dynein/dynactin complex, has been linked to an autosomal dominant form of motor neuron disease (MND). To study how this mutation affects the function of the dynein/dynactin complex and contributes to motor neuron degeneration, we generated p150(glued) G59S knock-in mice. We found that the G59S mutation destabilizes p150(glued) and disrupts the function of dynein/dynactin complex, resulting in early embryonic lethality of homozygous knock-in mice.

View Article and Find Full Text PDF

beta-Site APP cleavage enzyme 1 (BACE1) is the beta-secretase responsible for generating amyloid-beta (A beta) peptides in Alzheimer's disease (AD). Previous studies suggest that activation of protein kinase C (PKC) modulates the beta-secretase-mediated cleavage of APP and reduces the production of A beta. The mechanism of PKC-mediated modulation of beta-secretase activity, however, remains elusive.

View Article and Find Full Text PDF

One form of juvenile onset autosomal recessive amyotrophic lateral sclerosis (ALS2) has been linked to the dysfunction of the ALS2 gene. The ALS2 gene is expressed in lymphoblasts, however, whether ALS2-deficiency affects periphery blood is unclear. Here we report that ALS2 knockout (ALS2(-/-)) mice developed peripheral lymphopenia but had higher proportions of hematopoietic stem and progenitor cells in which the stem cell factor-induced cell proliferation was up-regulated.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease is caused by a selective loss of motor neurons. One form of juvenile onset autosomal recessive ALS (ALS2) has been linked to the loss of function of the ALS2 gene. The pathogenic mechanism of ALS2-deficiency, however, remains unclear.

View Article and Find Full Text PDF

Dysfunction of the ALS2 gene has been linked to one form of juvenile onset autosomal recessive amyotrophic lateral sclerosis (ALS). Previous in vitro studies suggest that over-expression of ALS2 protects cells from mutant Cu/Zn superoxide dismutase (SOD1)-induced cytotoxicity. To test whether ALS2 plays a protective role against mutant SOD1-mediated motor neuron degeneration in vivo, we examined the progression of motor neuron disease in SOD1(G93A) mice on an ALS2 null background.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, is caused by a selective loss of motor neurons in the CNS. Mutations in the ALS2 gene have been linked to one form of autosomal recessive juvenile onset ALS (ALS2). To investigate the pathogenic mechanisms of ALS2, we generated ALS2 knock-out (ALS2(-/-)) mice.

View Article and Find Full Text PDF

Genetic defects in copper metabolism highlight the delicate balance mammalian systems have developed to maintain normal copper homeostasis. Menkes disease, the mottled mouse, the Atox-1-deficient mouse and the ctr1 knockout mouse reveal the importance of adequate copper intake during embryogenesis and early development, especially in the central nervous system. The toxicity associated with excess copper as manifest in Wilson disease, the toxic milk mouse, the LEC rat and copper toxicosis in the Bedlington terrier demonstrate the profound cellular susceptibility to copper overload, in particular, in the brain and liver.

View Article and Find Full Text PDF