Publications by authors named "Hoo Sun Chung"

Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that coordinate diverse biological processes such as plant innate immunity and development. Recently, MAPK cascades have emerged as pivotal regulators of the plant holobiont, influencing the assembly of normal plant microbiota, essential for maintaining optimal plant growth and health. In this review, we provide an overview of current knowledge on MAPK cascades, from upstream perception of microbial stimuli to downstream host responses.

View Article and Find Full Text PDF

Background: Copy number determination is one of the first steps in the characterization of transgenic plant lines. The classical approach to this, Southern blotting, is time-consuming, expensive and requires massive amounts of high-quality genomic DNA. Other PCR-based techniques are either inaccurate, laborious, or expensive.

View Article and Find Full Text PDF

Plant defense responses include the extracellular release of defense-related molecules, such as pathogenesis-related proteins and secondary metabolites, as well as cell wall materials. This primarily depends on the trafficking of secretory vesicles to the plasma membrane, where they discharge their contents into the apoplastic space via soluble N-ethylmaleimide sensitive factor attachment protein receptor-assisted exocytosis. However, some pathogenic and symbiotic microbes have developed strategies to manipulate host plant exocytic pathways.

View Article and Find Full Text PDF

Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature.

View Article and Find Full Text PDF

Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report unique Ca signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots.

View Article and Find Full Text PDF

Activation of MAPK (Mitogen-Activated Protein Kinase) cascades after MAMP (Microbe-Associated Molecular Pattern) perception through PRR (Pattern Recognition Receptor) is one of the first conserved responses when plants encounter microbial organisms. Phosphorylation of various cellular factors in the MAMP-PRR pathway by MAPK cascades is critical for broad-spectrum plant innate immunity. Measurement of MAPK activation and identification of MAPK phosphorylation targets in the MAMP-PRR signal transduction pathway are essential to understand how plants reprogram their cellular processes to cope with unfavorable microbial attack.

View Article and Find Full Text PDF

Artificial microRNA (amiRNA) approaches offer a powerful strategy for targeted gene manipulation in any plant species. However, the current unpredictability of amiRNA efficacy has limited broad application of this promising technology. To address this, we developed epitope-tagged protein-based amiRNA (ETPamir) screens, in which target mRNAs encoding epitope-tagged proteins were constitutively or inducibly coexpressed in protoplasts with amiRNA candidates targeting single or multiple genes.

View Article and Find Full Text PDF

The plant hormone jasmonate (JA) activates gene expression by promoting ubiquitin-dependent degradation of jasmonate ZIM domain (JAZ) transcriptional repressor proteins. A key feature of all JAZ proteins is the highly conserved Jas motif, which mediates both JAZ degradation and JAZ binding to the transcription factor MYC2. Rapid expression of JAZ genes in response to JA is thought to attenuate JA responses, but little is known about the mechanisms by which newly synthesized JAZ proteins exert repression in the presence of the hormone.

View Article and Find Full Text PDF

Jasmonates (JAs) are fatty acid-derived signaling compounds that control diverse aspects of plant growth, development and immunity. The F-box protein COI1 functions both as a receptor for jasmonoyl-l-isoleucine (JA-Ile) and as the component of an E3-ubiquitin ligase complex (SCF(COI1) ) that targets JAZ transcriptional regulators for degradation. A key feature of JAZ proteins is the C-terminal Jas motif that mediates the JA-Ile-dependent interaction with COI1.

View Article and Find Full Text PDF

The phytohormone jasmonate (JA) regulates a wide range of growth, developmental, and defense-related processes during the plant life cycle. Identification of the JAZ family of proteins that repress JA responses has facilitated rapid progress in understanding how this lipid-derived hormone controls gene expression. Recent analysis of JAZ proteins has provided insight into the nature of the JA receptor, the chemical specificity of signal perception, and cross-talk between JA and other hormone response pathways.

View Article and Find Full Text PDF

JASMONATE ZIM-domain (JAZ) proteins act as repressors of jasmonate (JA) signaling. Perception of bioactive JAs by the F-box protein CORONATINE INSENSITIVE1 (COI1) causes degradation of JAZs via the ubiquitin-proteasome pathway, which in turn activates the expression of genes involved in plant growth, development, and defense. JAZ proteins contain two highly conserved sequence regions: the Jas domain that interacts with COI1 to destabilize the repressor and the ZIM domain of unknown function.

View Article and Find Full Text PDF

The lipid-derived hormone jasmonate (JA) regulates diverse aspects of plant immunity and development. Among the central components of the JA signaling cascade are the E3 ubiquitin ligase SCFCOI1 and Jasmonate ZIM-domain (JAZ) proteins that repress transcription of JA-responsive genes. Recent studies provide evidence that amino acid-conjugated forms of JA initiate signal transduction upon formation of a coronatine-insensitive1 (COI1)-JA-JAZ ternary complex in which JAZs are ubiquitinated and subsequently degraded.

View Article and Find Full Text PDF

Coronatine is an important virulence factor produced by several pathovars of the bacterial pathogen Pseudomonas syringae. The structure of coronatine is similar to that of a class of plant hormones called jasmonates (JAs). An important step in JA signaling is the SCF(COI1) E3 ubiquitin ligase-dependent degradation of JAZ repressor proteins.

View Article and Find Full Text PDF

Jasmonate (JA) and its amino acid conjugate, jasmonoyl-isoleucine (JA-Ile), play important roles in regulating plant defense responses to insect herbivores. Recent studies indicate that JA-Ile promotes the degradation of JASMONATE ZIM-domain (JAZ) transcriptional repressors through the activity of the E(3) ubiquitin-ligase SCF(COI1). Here, we investigated the regulation and function of JAZ genes during the interaction of Arabidopsis (Arabidopsis thaliana) with the generalist herbivore Spodoptera exigua.

View Article and Find Full Text PDF

The U-box motif is a conserved domain found in the diverse isoforms of E3 ubiquitin ligase in eukaryotes. From water-stressed hot pepper (Capsicum annuum L. cv Pukang) plants, we isolated C.

View Article and Find Full Text PDF

Jasmonic acid (JA) is a lipid-derived signal that regulates a wide variety of developmental and defense-related processes in higher plants. JA is synthesized from linolenic acid via an enzymatic pathway that initiates in the plastid and terminates in peroxisomes. The C18 JA precursor 12-oxo-phytodienoic acid (OPDA) is converted in the peroxisome to 3-oxo-2-(2'-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8:0), which subsequently undergoes three rounds of beta-oxidation to yield JA.

View Article and Find Full Text PDF

We analyzed 6749 lines tagged by the gene trap vector pGA2707. This resulted in the isolation of 3793 genomic sequences flanking the T-DNA. Among the insertions, 1846 T-DNAs were integrated into genic regions, and 1864 were located in intergenic regions.

View Article and Find Full Text PDF