The interaction between SARS-CoV PDZ-binding motifs (PBMs) and cellular PDZs is responsible for virus virulence. The PBM sequence present in the 3a and envelope (E) proteins of SARS-CoV can potentially bind to over 400 cellular proteins containing PDZ domains. The role of SARS-CoV 3a and E proteins was studied.
View Article and Find Full Text PDFEngineering of reverse genetics systems for newly emerged viruses allows viral genome manipulation, being an essential tool for the study of virus life cycle, virus-host interactions and pathogenesis, as well as for the development of effective antiviral strategies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent human coronavirus that has caused the coronavirus disease (COVID-19) pandemic. The engineering of a full-length infectious cDNA clone and a fluorescent replicon of SARS-CoV-2 Wuhan-Hu-1, using a bacterial artificial chromosome, is reported.
View Article and Find Full Text PDFCoronaviruses (CoVs) of genera α, β, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2.
View Article and Find Full Text PDFInvestigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ.
View Article and Find Full Text PDFCoronaviruses (CoVs) have the largest genome among RNA viruses and store large amounts of information without genome integration as they replicate in the cell cytoplasm. The replication of the virus is a continuous process, whereas the transcription of the subgenomic mRNAs is a discontinuous one, involving a template switch, which resembles a high frequency recombination mechanism that may favor virus genome variability. The origin of the three deadly human CoVs SARS-CoV, MERS-CoV and SARS-CoV-2 are zoonotic events.
View Article and Find Full Text PDFHigh energy density physics is the field of physics dedicated to the study of matter and plasmas in extreme conditions of temperature, densities and pressures. It encompasses multiple disciplines such as material science, planetary science, laboratory and astrophysical plasma science. For the latter, high energy density states can be accompanied by extreme radiation environments and super-strong magnetic fields.
View Article and Find Full Text PDFSelf-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE).
View Article and Find Full Text PDFViruses have evolved to interact with their hosts. Some viruses such as human papilloma virus, dengue virus, SARS-CoV, or influenza virus encode proteins including a PBM that interact with cellular proteins containing PDZ domains. There are more than 400 cellular protein isoforms with these domains in the human genome, indicating that viral PBMs have a high potential to influence the behavior of the cell.
View Article and Find Full Text PDFIn a recent experimental campaign, we used laser-accelerated relativistic hot electrons to ensure heating of thin titanium wire targets up to a warm dense matter (WDM) state [EPL114, 45002 (2016)10.1209/0295-5075/114/45002]. The WDM temperature profiles along several hundred microns of the wire were inferred by using spatially resolved X-ray emission spectroscopy looking at the Ti K characteristic lines.
View Article and Find Full Text PDFThere are no approved vaccines against the life-threatening Middle East respiratory syndrome coronavirus (MERS-CoV). Attenuated vaccines have proven their potential to induce strong and long-lasting immune responses. We have previously described that severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a virulence factor.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2021
Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution.
View Article and Find Full Text PDFA microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis. By pre-seeding uniform magnetic fields on the kilotesla order, the Lorenz force induces the Larmor gyromotion of the imploding ions and electrons.
View Article and Find Full Text PDFCross-reactivity against human coronaviruses with Flebogamma DIF and Gamunex-C, two available intravenous immunoglobulins (IVIG), has been reported. In this study, these IVIG were tested for neutralization activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). Neutralization capacity of lots of IVIG manufactured prior to COVID-19 pandemic was assessed against these viruses in cell culture.
View Article and Find Full Text PDFThe double laser pulse approach to relativistic electron beam (REB) collimation in solid targets has been investigated at the LULI-ELFIE facility. In this scheme two collinear laser pulses are focused onto a solid target with a given intensity ratio and time delay to generate REBs. The magnetic field generated by the first laser-driven REB is used to guide the REB generated by a second delayed laser pulse.
View Article and Find Full Text PDFViroporins are viral proteins with ion channel (IC) activity that play an important role in several processes, including virus replication and pathogenesis. While many coronaviruses (CoVs) encode two viroporins, severe acute respiratory syndrome CoV (SARS-CoV) encodes three: proteins 3a, E, and 8a. Additionally, proteins 3a and E have a PDZ-binding motif (PBM), which can potentially bind over 400 cellular proteins which contain a PDZ domain, making them potentially important for the control of cell function.
View Article and Find Full Text PDFIntense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T.
View Article and Find Full Text PDFEnergy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11} A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport.
View Article and Find Full Text PDFWe present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/μm and 0.
View Article and Find Full Text PDFFast electrons produced by a 10 ps, 160 J laser pulse through laser-compressed plastic cylinders are studied experimentally and numerically in the context of fast ignition. K(α)-emission images reveal a collimated or scattered electron beam depending on the initial density and the compression timing. A numerical transport model shows that implosion-driven electrical resistivity gradients induce strong magnetic fields able to guide the electrons.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2010
Electron acceleration by ultrahigh intensity lasers is studied by means of two-dimensional planar particle-in-cell simulations. It is shown that the full divergence of the fast electron beam is defined by two complementary physical effects: the regular radial beam deviation depending on the electron radial position and the angular dispersion. If the scale length of the preplasma surrounding the solid target is sufficiently low, the radial deviation is determined by the transverse component of the laser ponderomotive force.
View Article and Find Full Text PDF