Robotic rigid contact-rich manipulation in an unstructured dynamic environment requires an effective resolution for smart manufacturing. As the most common use case for the intelligence industry, a lot of studies based on reinforcement learning (RL) algorithms have been conducted to improve the performances of single peg-in-hole assembly. However, existing RL methods are difficult to apply to multiple peg-in-hole issues due to more complicated geometric and physical constraints.
View Article and Find Full Text PDFMarkerless vision-based teleoperation that leverages innovations in computer vision offers the advantages of allowing natural and noninvasive finger motions for multifingered robot hands. However, current pose estimation methods still face inaccuracy issues due to the self-occlusion of the fingers. Herein, we develop a novel vision-based hand-arm teleoperation system that captures the human hands from the best viewpoint and at a suitable distance.
View Article and Find Full Text PDFWe propose a vision-proprioception model for planar object pushing, efficiently integrating all necessary information from the environment. A Variational Autoencoder (VAE) is used to extract compact representations from the task-relevant part of the image. With the real-time robot state obtained easily from the hardware system, we fuse the latent representations from the VAE and the robot end-effector position together as the state of a Markov Decision Process.
View Article and Find Full Text PDFSimilar to specific natural language instructions, intention-related natural language queries also play an essential role in our daily life communication. Inspired by the psychology term "affordance" and its applications in Human-Robot interaction, we propose an object affordance-based natural language visual grounding architecture to ground intention-related natural language queries. Formally, we first present an attention-based multi-visual features fusion network to detect object affordances from RGB images.
View Article and Find Full Text PDF