Intestinal epithelium has the largest surface of human body, contributes dramatically to defense of toxicant-associated intestinal injury. Triclosan (TCS) and triclocarban (TCC), extensively employed as antibacterial agents in personal care products (PCPs) and healthcare facilities, caused serious damage to human intestine. However, the role of the intestinal epithelium in TCS/TCC-induced intestinal toxicity and its underlying toxic mechanisms remain incompletely understood.
View Article and Find Full Text PDFNonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials-the Janus transition metal dichalcogenides in the 1 T' phase, synthesized by an advanced atomic-layer substitution method.
View Article and Find Full Text PDFRuddlesden-Popper tin halide perovskites are a class of two-dimensional (2D) semiconductors with exceptional optoelectronic properties, high carrier mobility, and low toxicity. However, the synthesis of phase-pure 2D tin perovskites is still challenging, and the fundamental understanding of their optoelectronic properties is deficient compared to their lead counterparts. Here, we report the synthesis of a series of 2D tin perovskite bulk crystals with high phase purity via a mixed-solvent strategy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Artificial synapses based on two-dimensional (2D) transition metal dichalcogenides (TMDs) materials have attracted wide attention to boost the development of neuromorphic computing in recent years. Various structures have been adopted to build 2D-material-based artificial synapses. In lateral- and vertical-structures, the realization of synaptic function mainly results from the migration of the defects and vacancies, which requires the strong ion diffusion ability.
View Article and Find Full Text PDFLong-lived interlayer excitons (IXs) in van der Waals heterostructures (HSs) stacked by monolayer transition metal dichalcogenides (TMDs) carry valley-polarized information and thus could find promising applications in valleytronic devices. Current manipulation approaches for valley polarization of IXs are mainly limited in electrical field/doping, magnetic field or twist-angle engineering. Here, we demonstrate an electrochemical-doping method, which is efficient, in-situ and nonvolatile.
View Article and Find Full Text PDFExcitons, bound pairs of electrons and holes, could act as an intermediary between electronic signal processing and optical transmission, thus speeding up the interconnection of photoelectric communication. However, up to date, exciton-based logic devices such as switches that work at room temperature are still lacking. This work presents a prototype of a room-temperature optoelectronic switch based on excitons in WSe monolayer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
The diversification of data types and the explosive increase of data size in the information era continuously required to miniaturize the memory devices with high data storage capability. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are promising candidates for flexible and transparent electronic and optoelectronic devices with high integration density. Multistate memory devices based on TMDs could possess high data storage capability with a large integration density and thus exhibit great potential applications in the field of data storage.
View Article and Find Full Text PDFStrain engineering provides an efficient strategy to modulate the fundamental properties of semiconducting structures for use in functional electronic and optoelectronic devices. Here, we report on how the strain affects the bandgap, optical anisotropy and stability of two-dimensional (2D) perovskite (BA)(MA)PbI (n = 1-3) microplates, using photoluminescence spectroscopy. Upon applying external strain, the bandgap decreases at a rate of -5.
View Article and Find Full Text PDFTwo-dimensional organic-inorganic perovskites have attracted considerable interest recently. Here, we present a systematic study of the temperature-dependent photoluminescence on phase pure (n-BA)(MA) Pb I ( n = 1-5) and (iso-BA)(MA) Pb I ( n = 1-3) microplates obtained by mechanical exfoliation. The photoluminescence peak position gradually changes from a red-shift for n = 1 to a blue-shift for n = 5 with an increase in temperature in the (n-BA)(MA) Pb I ( n = 1-5) series, while only a monotonous blue-shift has been observed for the (iso-BA)(MA) Pb I ( n = 1-3) series, which can be attributed to the competition between the thermal expansion interaction and electron-phonon interaction.
View Article and Find Full Text PDFHeterostructures consisting of 2D layered perovskites are expected to exhibit interesting physical phenomena inaccessible to the single 2D perovskites and can greatly extend their functionalities for electronic and optoelectronic applications. Herein, we develop a solution method to synthesize (CHNH)PbI/(CHNH)(CHNH)PbI heterostructures with centimeter size, high phase purity, controllable thickness and junction depth, high crystalline quality, and great stability for highly narrow dual-band photodetectors. On the basis of the different lattice constant, solubility, and growth rate between (CHNH)PbI and (CHNH)(CHNH)PbI, the designed synthetic method allows to first grow the (CHNH)PbI at the water-air interface and subsequently the (CHNH)(CHNH)PbI layer is formed via a diffusion process.
View Article and Find Full Text PDFThe incorporation of chloride (Cl) into methylammonium lead iodide (MAPbI) perovskites has attracted much attention because of the significantly improved performance of the MAPbI-based optoelectronic devices with a negligible small amount of Cl incorporation. It is expected that the Cl incorporation in 2D perovskites with layered nature would be much more efficient and thus can greatly alter the morphology, optical properties, phase transition, and charge transport; however, studies on those aspects in 2D perovskites remain elusive up to date. Here, a one-pot solution method to synthesize the Cl-doped lead-free 2D perovskite (BA)SnI with various Cl incorporation concentrations is reported and how the Cl incorporation affects the morphology change, photoluminescence, phase transition, and charge transport is investigated.
View Article and Find Full Text PDFWe study the phase-dependent thermal transport of a short temperature-biased Josephson junction based on two-dimensional electron gas (2DEG) with both Rashba and Dresselhaus couplings. Except for thermal equilibrium temperature T, characters of thermal transport can also be manipulated by interaction parameter h and the parameter [Formula: see text] . A larger value and a sharper switching behavior of thermal conductance can be obtained if h takes suitable values and [Formula: see text] is larger.
View Article and Find Full Text PDFFilterless narrowband photodetectors can realize color discrimination without filter or bulk spectrometer, thus greatly reducing the system volume and cost for many imaging applications. Charge collection narrowing has been demonstrated to be a successful approach to achieve filterless narrowband photodetections; nevertheless, it sacrifices the sensitivity of the photodetectors. Here we show a highly tunable narrowband photodetector based on two-dimensional perovskite single crystals with high external quantum efficiency (200%), ultralow dark current (10 A), and high on-off ratio (10).
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Two-dimensional (2D) Ruddlesden-Popper perovskites have attracted great interest for their promising applications in high-performance optoelectronic devices owing to their greatly tunable band gaps, layered characteristics, and better environmental stability over three-dimensional (3D) perovskites. Here, we for the first time report on photodetectors based on few-layer MoS (n-type) and lead-free 2D perovskite (PEA)SnI (p-type) heterostructures. The heterojunction device is capable of sensing light over the entire visible and near-infrared wavelength range with a tunable photoresponse peak.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2019
Two-dimensional (2D) organic-inorganic perovskites have recently undergone rapid development because of their unique optical properties, layered nature, and better environmental stability. Here, we report on a new type of 2D lead-free perovskite (CHCHNH)CsSnI crystals with millimeter size and high field-effect hole mobility synthesized by a solution method. The excellent crystalline quality and phase purity have been verified by X-ray diffraction and low-temperature photoluminescence studies, while the X-ray photoelectron spectroscopy and energy-dispersive spectrometry measurements reveal the successful incorporation of Cs element into the resultant crystals and the absence of Sn in the as-synthesized crystals.
View Article and Find Full Text PDFBy controlling the hydrolysis of alkoxysilanes, highly luminescent, transparent and flexible perovskite quantum dot (QD) gels were synthesized. The gels could maintain the structure without shrinking and exhibited excellent stability comparing to the QDs in solution. This in situ fabrication can be easily scaled up for large-area/volume gels.
View Article and Find Full Text PDFI-VI chalcogenide low-toxicity semiconductors and their near-infrared optical property are of great importance for solar cell and biological probe applications. Here, we report the synthesis of AgS Se (x = 0-1) ternary nanocrystals (NCs) and their photoelectrochemical properties, using a refined simple hot-injection reaction recipe. The ICP-MS results show the change of non-metallic composition in products and precursors, which can be well fitted with Vegard's equation.
View Article and Find Full Text PDFWe present a scheme for encoding single logical qubit information, which is immune to collective decoherence acting on Hilbert space spanned by the corresponding states. The scheme needs a spatial entanglement gate and a polarization entanglement gate, which are realized with the assistance of weak cross-Kerr nonlinear interaction between photons and coherent states via Kerr media. Under the condition of sufficient large phase shifts, single logical qubit information can be encoded into this minimal optical decoherence-free subsystem with near-unity fidelity.
View Article and Find Full Text PDF