Alzheimer's disease (AD), the most common form of dementia, has gotten considerable attention. Previous studies have demonstrated that clioquinol (CQ) as a metal chelator is a potential drug for the treatment of AD. However, the mode of action of CQ in AD is still unclear.
View Article and Find Full Text PDFA novelty-designed wide-neck classifier (WNC) was proposed to enhance the passing ability and classification efficiency of fine particles. Using computational fluid dynamics (CFD), we studied the flow field and velocity distribution in the newly designed WNC. The velocity of the fluid gradually decreased from the wall to the center and from the cylinder to the cone, which facilitates particle classification and thickening.
View Article and Find Full Text PDFThe emerging potassium-tellurium (K-Te) battery system is expected to realize fast reaction kinetics and excellent rate performance due to the exceptional electrical conductivity of Te. However, there has been a lack of fundamental knowledge about this new K-Te system, including the reaction mechanism and cathode structure design. Herein, a two-step reaction pathway from Te to K Te and ultimately to K Te is investigated in carbonate electrolyte-based K-Te batteries by X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction characterizations.
View Article and Find Full Text PDFSilver vanadates (SVOs) have been widely investigated as cathode materials for high-performance lithium-ion batteries (LIBs). However, similar to most vanadium-based materials, SVOs suffer from structural collapse/amorphization and vanadium dissolution from the electrode into the electrolyte during the Li insertion and extraction process, causing poor electrochemical performance in LIBs. We employ ultrathin AlO coatings to modify β-AgVO (as a typical example of SVOs) by an atomic layer deposition (ALD) technique.
View Article and Find Full Text PDFAn acetonitrile/water-in-salt (AWIS) hybrid electrolyte was developed for Zn-ion batteries. Compared to conventional aqueous electrolytes, the AWIS hybrid electrolyte prolonged the lifespan of Zn|Zn cells from 150 to 2500 h and increased the upper cut-off voltage from 1.8 to 2.
View Article and Find Full Text PDFGraphite/silicon (G/Si) composites are considered as possible alternative anode materials to commercial graphite anodes. However, the unstable solid electrolyte interphase (SEI) on G/Si particles results in rapid capacity decay, impeding practical applications. Herein, a facile and low-cost AlO coating was developed to fabricate stable artificial SEI layers on G/Si composites.
View Article and Find Full Text PDFA new hybrid organic-inorganic film, tincone, was developed by using molecular layer deposition (MLD), and exhibited high electrochemical activity toward Li storage. The self-limiting growth behavior, high uniformity on various substrates and good Li-storage performance make tincone a very promising new anode material for 3D microbatteries.
View Article and Find Full Text PDFSodium superionic conductor (NASICON)-type lithium aluminum germanium phosphate (LAGP) has attracted increasing attention as a solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), due to the good ionic conductivity and highly stable interface with Li metal. However, it still remains challenging to achieve high density and good ionic conductivity in LAGP pellets by using conventional sintering methods, because they required high temperatures (>800 °C) and long sintering time (>6 h), which could cause the loss of lithium, the formation of impurity phases, and thus the reduction of ionic conductivity. Herein, we report the utilization of a spark plasma sintering (SPS) method to synthesize LAGP pellets with a density of 3.
View Article and Find Full Text PDF