Aqueous Zn-ion batteries (AZIBs) are widely acknowledged as viable future energy storage solutions, particularly for low-cost stationary applications. However, the interfacial instability of zinc anodes represents a major challenge to the commercial potential of Zn-ion systems, promoting an array of side reactions including spontaneous corrosion, hydrogen evolution, and dendrite growth that destabilize cell performance, lower Coulombic efficiency and ultimately lead to early cell failure. While other commercially relevant battery systems benefit from a spontaneously forming solid electrolyte interphase, no such layer forms in AZIBs.
View Article and Find Full Text PDFAqueous zinc ion batteries (AZIBs) are renowned for their exceptional safety and eco-friendliness. However, they face cycling stability and reversibility challenges, particularly under high-rate conditions due to corrosion and harmful side reactions. This work introduces fumaric acid (FA) as a trace amount, suitable high-rate, multifunctional, low-cost, and environmentally friendly electrolyte additive to address these issues.
View Article and Find Full Text PDFAqueous zinc-ion batteries (AZIBs) have experienced a rapid surge in popularity, as evident from the extensive research with over 30 000 articles published in the past 5 years. Previous studies on AZIBs have showcased impressive long-cycle stability at high current densities, achieving thousands or tens of thousands of cycles. However, the practical stability of AZIBs at low current densities (<1C) is restricted to merely 50-100 cycles due to intensified cathode dissolution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO , the affinity of Zn ions to alginate acid induces a well-aligned accelerating channel for uniform plating.
View Article and Find Full Text PDFThe electrochemical effect of isotope (EEI) of water is introduced in the Zn-ion batteries (ZIBs) electrolyte to deal with the challenge of severe side reactions and massive gas production. Due to the low diffusion and strong coordination of ions in D O, the possibility of side reactions is decreased, resulting in a broader electrochemically stable potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. Moreover, we demonstrate that D O eliminates the different ZHS phases generated by the change of bound water during cycling because of the consistently low local ion and molecule concentration, resulting in a stable interface between the electrode and electrolyte.
View Article and Find Full Text PDFFront Psychiatry
September 2022
Introduction: Sex differences in the frequency and severity of personality disorders (PDs) have been widely reported in Western countries. However, limited literature suggests a similar sex distribution in the Chinese clinical population. This study investigated sex differences in self-reported and interviewed patients with PDs in a clinical population in China.
View Article and Find Full Text PDFRecently, the Cancer Genome Atlas and Asian Cancer Research Group propose two new classifications system of gastric cancer by using multi-platforms of molecular analyses. However, these highly complicated and cost technologies have not yet been translated into full clinical utility. In addition, the clinicians are expected to gain more guidance of treatment for different molecular subtypes.
View Article and Find Full Text PDFApurinic/apyrimidinic endonuclease 1 (APE1) is an essential base excision repair enzyme that is upregulated in a number of cancers, contributes to resistance of tumors treated with DNA-alkylating or -oxidizing agents, and has recently been identified as an important therapeutic target. In this work, we identified hot spots for binding of small organic molecules experimentally in high resolution crystal structures of APE1 and computationally through the use of FTMAP analysis ( http://ftmap.bu.
View Article and Find Full Text PDFThe introduction of a gene, strain, or microbial consortium into an indigenous bacterial population is known as bioaugmentation. This technique has been proposed as an effective strategy for accelerating and enhancing the removal of recalcitrant and toxic compounds during wastewater treatment. In this study, three types of reactors were used to test whether quorum sensing plays an important role in bioaugmented systems.
View Article and Find Full Text PDFApurinic/apyrimidinic endonuclease I (APE1) is an essential base excision repair enzyme that catalyzes a Mg²⁺-dependent reaction in which the phosphodiester backbone is cleaved 5' of an abasic site in duplex DNA. This reaction has been proposed to involve either one or two metal ions bound to the active site. In the present study, we report crystal structures of Mg²⁺, Mn²⁺, and apo-APE1 determined at 1.
View Article and Find Full Text PDFPseudomonas sp. HF-1 bioaugmented systems were operated to treat tobacco wastewater under pH 5.5 for three cycles and pH 8.
View Article and Find Full Text PDFIn response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs which accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD).
View Article and Find Full Text PDFTo better construct a bioaugmented system for tobacco wastewater treatment, activated sludge was inoculated with different concentrations of the nicotine-degrading bacterium Pseudomonas sp. HF-1. The results showed that inoculum concentrations of 0.
View Article and Find Full Text PDFQuorum sensing is a concentration-sensing mechanism that plays a vital role in sludge granulation. In this study, the regularities of distribution of different signal molecules, including intra- and interspecific signal molecules (diffusible signal factor, DSF), interspecific signal molecules (autoinducter-2, AI-2) and intraspecific signal molecules (acyl-homoserine lactones, AHLs), from three types of anaerobic granular sludge were investigated. The results showed that 70-90% of DSF was distributed in sludge, while AI-2 in the Water phase accounted for over 80% of the total content.
View Article and Find Full Text PDFBioaugmentation (BA) using Acinetobacter sp. TW with high nicotine-degrading efficiency was applied in a bioreactor receiving a load of COD (3,200 ± 50 mg/L) and nicotine (1.0 ± 0.
View Article and Find Full Text PDFTo enable development of a better bacterial bioaugmentation system for tobacco wastewater treatment, the roles and release patterns of acylated homoserine lactones (AHLs) in Pseudomonas sp. HF-1 were evaluated. Swarming was found to be induced by N-hexanoyl-homoserine lactone (C(6)-HSL) and N-3-oxo-hexanoyl-homoserine lactone (3-oxo-C(6)-HSL); the formation of extracellular polymeric substances (EPS) was induced by 3-oxo-C(6)-HSL, C(6)-HSL and N-3-oxo-octanoyl-homoserine lactone (3-oxo-C(8)-HSL); and biofilm formation was induced by C(6)-HSL and 3-oxo-C(8)-HSL.
View Article and Find Full Text PDFA wealth of genetic information and some biochemical analysis have made the GAL regulon of the yeast Saccharomyces cerevisiae a classic model system for studying transcriptional activation in eukaryotes. Galactose induces this transcriptional switch, which is regulated by three proteins: the transcriptional activator Gal4p, bound to DNA; the repressor Gal80p; and the transducer Gal3p. We showed previously that NADP appears to act as a trigger to kick the repressor off the activator.
View Article and Find Full Text PDFApurinic/apyrimidinic endonuclease (APE1) is an unusual nuclear redox factor in which the redox-active cysteines identified to date, C65 and C93, are surface inaccessible residues whose activities may be influenced by partial unfolding of APE1. To assess the role of the five remaining cysteines in APE1's redox activity, double-cysteine mutants were analyzed, excluding C65A, which is redox-inactive as a single mutant. C93A/C99A APE1 was found to be redox-inactive, whereas other double-cysteine mutants retained the same redox activity as that observed for C93A APE1.
View Article and Find Full Text PDFAlthough the human genome is littered with sequences derived from the Hsmar1 transposon, the only intact Hsmar1 transposase gene exists within a chimeric SET-transposase fusion protein referred to as Metnase or SETMAR. Metnase retains many of the transposase activities including terminal inverted repeat (TIR) specific DNA-binding activity, DNA cleavage activity, albeit uncoupled from TIR-specific binding, and the ability to form a synaptic complex. However, Metnase has evolved as a DNA repair protein that is specifically involved in nonhomologous end joining.
View Article and Find Full Text PDFRedox reactions are known to regulate many important cellular processes. In this review, we focus on the role of redox regulation in DNA repair both in direct regulation of specific DNA repair proteins as well as indirect transcriptional regulation. A key player in the redox regulation of DNA repair is the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) in its role as a redox factor.
View Article and Find Full Text PDFMethionine aminopeptidase (MetAP) is a promising target to develop novel antibiotics, because all bacteria express MetAP from a single gene that carries out the essential function of removing N-terminal methionine from nascent proteins. Divalent metal ions play a critical role in the catalysis, and there is an urgent need to define the actual metal used by MetAP in bacterial cells. By high throughput screening, we identified a novel class of catechol-containing MetAP inhibitors that display selectivity for the Fe(II)-form of MetAP.
View Article and Find Full Text PDFCD45, a type I transmembrane protein tyrosine phosphatase expressed on nucleated hemopoietic cells, is prominently involved in T cell activation. Ligation of CD45RB isoforms has been associated with transplant tolerance. A recent genotyping analysis of asthma indicates a correlation with CD45 splicing.
View Article and Find Full Text PDFBackground: Maternal atopic background and stimulation of the adaptive immune system with allergen interact in the development of allergic disease. Stimulation of the innate immune system through microbial exposure, such as activation of the innate Toll-like-receptor 2 (TLR2), may reduce the development of allergy in childhood. However, little is known about the immunological effects of microbial stimulation on early immune responses and in association with maternal atopy.
View Article and Find Full Text PDF